References
- Barndorff-Nielsen OE and Cox DR (1994). Inference and Asymptotics, Chapman and Hall, London.
- Box GEP and Draper NR (1959). A basis for the selection of a response surface design, Journal of the American Statistical Association, 54, 622-654. https://doi.org/10.1080/01621459.1959.10501525
- Cameron AC and Trivedi PK (2013). Regression Analysis of Count Data, Cambridge University Press, New York.
- Chen Y and Ye K (2009). Bayesian hierarchical modeling on dual response surfaces in partially replicated designs, Quality Technology and Quantitative Management, 6, 371-389. https://doi.org/10.1080/16843703.2009.11673205
- Coxe S, West SG, and Aiken LS (2009). The analysis of count data: a gentle introduction to Poisson regression and its alternatives, Journal of Personality Assessment, 91, 121-136. https://doi.org/10.1080/00223890802634175
- Firth D (1993). Bias reduction of maximum likelihood estimates, Biometrica, 80, 27-38. https://doi.org/10.1093/biomet/80.1.27
- Fletcher R and Powell MJD (1963). A rapidly convergent descent method for minimization, Computer Journal, 6, 163-168. https://doi.org/10.1093/comjnl/6.2.163
- Khuri AI, Mukherjee B, Sinha BK, and Gosh M (2006). Design issues for generalized linear models: a review, Statistical Science, 21, 376-399. https://doi.org/10.1214/088342306000000105
- Lawley DN (1956). A general method for approximating to the distribution of likelihood ratio criteria, Biometrika, 43, 295-303. https://doi.org/10.1093/biomet/43.3-4.295
- Lehmann EL (1999). Elements of Large Sample Theory, Springer-Verlag, New York.
- McCullagh P and Nelder JA (1989). Generalized Linear Models (2nd ed), Chapman and Hall, London.
- Mehr Mansour S and Niaparast M (2019). The effect of small sample on optimal designs for logistic regression models, Communications in Statistics-Theory and Methods, 48, 2893-2903. https://doi.org/10.1080/03610926.2018.1473592
- Nelder JA and Wedderburn RWM (1972). Generalized linear models, Journal of the Royal Statistical Society, Series A, 135, 370-384. https://doi.org/10.2307/2344614
- Poursina D and Talebi H (2013). Modified D-optimal design for logistic model, Journal of Statistical Computation and Simulation, 84, 428-437. https://doi.org/10.1080/00949655.2012.715311
- Pronzato L and Pazman A (2013). Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties, volume 212 of Lecture Notes in Statistics, Springer, New York.
- Russell KG, Eccleston JA, Lewis SM, and Woods DC (2009a). Design considerations for small experiments and simple logistic regression, Journal of Statistical Computation and Simulation, 79, 81-91. https://doi.org/10.1080/00949650701609006
- Russell KG,Woods DC, Lewis SM, and Eccleston JA (2009b). D-optimal designs for Poisson regression models, Statistica Sinica, 19, 721-730.
- Searle SR, Casella G, and McCulloch CE (1992). Variance Components, Wiley, New York.
- Wang Y, Myers RH, Smith EP, and Ye K (2006a). D-optimal designs for Poisson regression models, Journal of Statistical Planning Inference, 136, 2831-2845. https://doi.org/10.1016/j.jspi.2004.10.017
- Wang Y, Smith EP, and Ye K (2006b). Sequential designs for a Poisson regression model in toxicological and medical studies, Journal of Statistical Planning Inference, 136, 3187-3202. https://doi.org/10.1016/j.jspi.2004.12.007