References
- Canny, J. (1986). Collision detection for moving polyhedra, IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 200-209. https://doi.org/10.1109/TPAMI.1986.4767773
- Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981). A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data, Technometrics, 23, 351-361. https://doi.org/10.1080/00401706.1981.10487680
- Efron, B. (1979). Computers and the theory of statistics: thinking the unthinkable, SIAM Review, 21, 460-480. https://doi.org/10.1137/1021092
- Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Statistical Science, 1, 54-75. https://doi.org/10.1214/ss/1177013815
- Fligner, M. A. and Killeen, T. J. (1976). Distribution-free two-sample tests for scale, Journal of the American Statistical Association, 71, 210-213. https://doi.org/10.1080/01621459.1976.10481517
- Gonzalez, R. C. and Wood, R. E. (2016). Digital Image Processing (3rd ed), Pearson Prentice-Hall, Delhi.
- Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer, New York.
- Jain, S., Jagtapb, V., and Pisea, N. (2015). Computer aided melanoma skin cancer detection using image processing, Procedia Computer Science, 48, 735-740. https://doi.org/10.1016/j.procs.2015.04.209
- Khirade, S. D. and Patil, A. B. (2015). Plant disease detection using image processing. In 2015 Interna- tional Conference on Computing Communication Control and Automation (ICCUBEA), (pp. 768-771), IEEE, Pune, India.
- Kim, Y. H. (2012). Adaptive noise reduction algorithm for image based on block approach, Communications for Statistical Applications and Methods, 19, 225-235. https://doi.org/10.5351/CKSS.2012.19.2.225
- Kim, Y. H. and Nam, J. (2009). Statistical algorithm and application for the noise variance estimation, Journal of the Korean Data & Information Science Society, 20, 869-878.
- Marr, D. and Hildreth, E. (1980). Theory of edge detection, Proceedings of the Royal Society B, 207, 187-217.
- Peters, R. A. (1995). A new algorithm for image noise reduction using mathematical morphology, IEEE Transactions on Image Processing, 4, 554-568. https://doi.org/10.1109/83.382491
- Roberts, L. G. (1965). Machine perception of Three-dimensional solids. In J. T. Tippett, et al. (Eds), Optical and Electro-optical Information Processing, MIT Press.
- Rosenfeld, A. and Kak, A. C. (1982). Digital Picture Processing (2nd ed), Academic Press, New York.
- Sobel, I. E. (1970). Camera Models and Machine Perception (No. AIM-121), Computer Science Department, Stanford University.
- Song, Y., Han, Y., and Lee, S. (2013). Effective impulse noise reduction method based on local correlation, The Imaging Science Journal, 61, 47-56. https://doi.org/10.1179/1743131X11Y.0000000051
- Toulouse, T., Rossi, L., Celik, T., and Akhloufi, M. (2016). Automatic fire pixel detection using image processing: a comparative analysis of rule-based and machine learning-based methods, Signal, Image and Video Processing, 10(4), 647-654. https://doi.org/10.1007/s11760-015-0789-x
- Van De Ville, D., Nachtegael, M., Van der Weken, D., Kerre, E. E., Philips, W., and Lemahieu, I. (2003). Noise reduction by fuzzy image filtering, IEEE Transactions on Fuzzy Systems, 11, 429-436. https://doi.org/10.1109/TFUZZ.2003.814830