DOI QR코드

DOI QR Code

다변량 시계열 자료를 이용한 부정맥 예측

Prediction of arrhythmia using multivariate time series data

  • 이민혜 (숙명여자대학교 통계학과) ;
  • 노호석 (숙명여자대학교 통계학과, 자연과학연구소)
  • Lee, Minhai (Department of Statistics, Sookmyung Women's University) ;
  • Noh, Hohsuk (Department of Statistics, The Research Institute of Natural Sciences, Sookmyung Women's University)
  • 투고 : 2019.07.25
  • 심사 : 2019.08.26
  • 발행 : 2019.10.31

초록

최근에 부정맥 환자가 증가하면서 머신러닝을 이용한 부정맥을 예측하는 연구가 활발하게 진행되고 있다. 기존의 많은 연구들은 특정한 시점의 RR 간격 데이터에서 추출한 특징변수 다변량 데이터에 기반하여 부정맥을 예측하였다. 본 연구에서는 심장 상태가 시간에 따라 변해가는 패턴도 부정맥 예측에 중요한 정보가 될 수 있다고 생각하여 일정한 시간 간격을 두고 특징변수의 다변량 벡터를 추출하여 쌓음으써 얻어지는 다변량 시계열 데이터로 부정맥을 예측하는 것의 유용성에 대해 살펴보았다. 1-Nearest Neighbor 방법과 그것을 앙상블(ensemble)한 learner를 중심으로 비교했을 경우 시계열의 특징을 고려한 적절한 시계열 거리함수를 선택하여 시계열 정보를 활용한 다변량 시계열 데이터 기반 방법의 분류 성능이 더 좋게 나오는 것을 확인하였다.

Studies on predicting arrhythmia using machine learning have been actively conducted with increasing number of arrhythmia patients. Existing studies have predicted arrhythmia based on multivariate data of feature variables extracted from RR interval data at a specific time point. In this study, we consider that the pattern of the heart state changes with time can be important information for the arrhythmia prediction. Therefore, we investigate the usefulness of predicting the arrhythmia with multivariate time series data obtained by extracting and accumulating the multivariate vectors of the feature variables at various time points. When considering 1-nearest neighbor classification method and its ensemble for comparison, it is confirmed that the multivariate time series data based method can have better classification performance than the multivariate data based method if we select an appropriate time series distance function.

키워드

참고문헌

  1. Au-Yeung, W. T. M., Reinhall, P. G., Bardy, G. H., and Brunton, S. L. (2018). Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data, PLoS ONE, 13, e0207215. https://doi.org/10.1371/journal.pone.0207215
  2. Csillik, O., Belgiu, M., Asner, G. P., and Kelly, M. (2019). Object-based time-constrained dynamic time warping classification of crops using sentinel-2, Remote Sensing, 11, 1257. https://doi.org/10.3390/rs1041257
  3. Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996) A density-based algorithm for discovering clusters. In Simoudis, E., Han, J., and Fayyad, U. M. (Eds), Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, (KDD-96), 226-231.
  4. Lake, D. E., Richman, J. S., Griffin, M. P., and Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability, American Journal of Physiology, 283, R789-R797.
  5. Lee, H., Shin, S. Y., Seo, M., Nam, G. B., and Joo, S. (2016). Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks, Scientific Reports, 6, 32390. https://doi.org/10.1038/srep32390
  6. Montero, P. and Vilar, J. A. (2014). TSclust: an R package for time series clustering, Journal of Statistical Software, 62, 1-43.
  7. Park, J., Lee, S., and Jeon, M. (2009). Atrial fibrillation detection by heart rate variability in Poincare plot, BioMedical Engineering Online, 8, 1-12. https://doi.org/10.1186/1475-925X-8-1
  8. Sarkar, S., David Ritscher, D., and Mehra, R. (2008). A Detector for a Chronic Implantable Atrial Tachyarrhythmia Monitor, IEEE Transactions On Biomedical Engineering, 55, 1219-1224. https://doi.org/10.1109/TBME.2007.903707
  9. Shieh, J. S., Yeh, R. G., Chen, G. Y., and Kuo, C. D. (2010). Parameter investigation of detrended fluctuation analysis for short-term human heart rate variability, Journal of Medical and Biological Engineering, 30, 277-282. https://doi.org/10.5405/jmbe.30.5.02