DOI QR코드

DOI QR Code

Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent

  • 이찬 (연세대학교 신소재공학과) ;
  • 한우제 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Lee, Chan (Department of Materials Science and Engineering, Yonsei University) ;
  • Han, Wooje (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2019.12.11
  • 심사 : 2019.12.27
  • 발행 : 2019.12.30

초록

본 연구에서는 liquid-solid solution 합성법을 통해 고유전 페로브스카이트 구조의 barium strontium titanate(Ba0.6Sr0.4TiO3, BSTO)를 합성하여 trimethylsilyl chloride(TMCS)를 silylation agent로 이용한 표면개질을 진행하였다. Silylation 표면개질을 활용하여 기존 BSTO 나노입자 표면에 있던 -OH 리간드와 TMCS가 갖고 있는 Cl을 반응시켜 나노입자 표면의 리간드를 -Si, -CH3로 치환하였다. 다양한 TMCS 농도의 변화를 주어 silylation을 진행했고, Fourier-transform infrared spectroscopy 및 X 선 회절 분석, 전계방사 주사전자현미경을 통해 silicon network 및 결정구조, 나노입자의 크기를 확인하였다. 접촉각 변화 관찰을 통해 가장 많이 silylation된 BSTO 나노입자에서 120.9°인 소수성 특성을 확인하였다. 나노입자의 silylation을 통해 D.I water 내 BSTO 나노입자의 소수화 정도를 확인하였다.

In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

키워드

참고문헌

  1. J. W. Lee, "Nano Material Technology Trend (in Kor.)", KISTI, Daejeon, 2 (2004).
  2. W. T. Kim, "The Present Status and Outlook of Nano Technology (in Kor.)", Proc. International Microelectronics and Packaging Society Conference, KIST, Seoul, 37 (2001).
  3. C. Liu, T. J. Hajagos, D. Chen, Y. Chen, D. Kishpaugh, and Q. Pei, "Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites", ACS Appl. Mater. Interfaces., 8(7), 4795 (2016). https://doi.org/10.1021/acsami.6b00743
  4. T. Higashihara and M. Ueda, "Recent progress in high refractive index polymers", Macromolecules, 48(7), 1915 (2015). https://doi.org/10.1021/ma502569r
  5. S. Maeda, M. Fujita, N. Idota, K. Matsukawa, and Y. Sugahar, "Preparation of transparent bulk $TiO_2$/PMMA hybrids with improved refractive indices via an in situ polymerization process using $TiO_2$ nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization", ACS Appl. Mater. Interfaces., 8(50), 34762 (2016). https://doi.org/10.1021/acsami.6b10427
  6. M. Vijatovic, J. D. Bobic, and B. D. Stojanovic, "History and Challenges of Barium Titanate: Part I", Sci. Sinter., 40(2), 155 (2008). https://doi.org/10.2298/SOS0802155V
  7. T. Y. Lee, K. H. Kim, M. S. Kim, J. H. Choi, M. S. Kim, and S. H. Yoo, "Light Efficiency of LED Package with $TiO_2$-nanoparticle-dispersed Encapsulant", J. Microelectron. Packag. Soc., 21(3), 31 (2014). https://doi.org/10.6117/kmeps.2014.21.3.031
  8. X. Wang, B. I. Lee, M. Hu, E. A. Payzant, and D. A. Blom, "Nanocrystalline $BaTiO_3$ powder via a sol process ambient conditions", J. Eur. Ceram. Soc., 26, 2319 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.04.002
  9. J. B. Mamani, L. F. Gamarra, and G. E. de S. Brito, "Synthesis and characterization of $Fe_3O_4$ nanoparticles with perspectives in biomedical applications", Mat. Res., 17, 542 (2014). https://doi.org/10.1590/S1516-14392014005000050
  10. P. K. Dutta and J. R. Gregg, "Hydrothermal synthesis of tetragonal barium titanate ($BaTiO_3$)", Chemistry of materials, 4(4), 843 (1992). https://doi.org/10.1021/cm00022a019
  11. M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti, "A general soft?chemistry route to perovskites and related materials: synthesis of $BaTiO_3$, $BaZrO_3$, and $LiNbO_3$ nanoparticles", Angew. Chem., 43(17), 2270 (2004). https://doi.org/10.1002/anie.200353300
  12. M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, "Hydrothermal microwave: a new route to obtain photoluminescent crystalline $BaTiO_3$ nanoparticles", Chem. Mater., 20(16), 5381 (2008). https://doi.org/10.1021/cm801638d
  13. S. I. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe, and M. Naito, "Rapid mechanochemical synthesis of fine barium titanate nanoparticles", Mater. Lett., 62(17-18), 2957 (2008). https://doi.org/10.1016/j.matlet.2008.01.083
  14. W. Han, B. W. Yoo, K.-H. Kwon, H. H. Cho, and H.-H. Park, "Fluorine ligand exchange effect in poly (vinylidenefluorideco-hexafluoropropylene) with embedded fluorinated barium titanate nanoparticles", Thin Solid Films, 619, 17 (2016). https://doi.org/10.1016/j.tsf.2016.10.043
  15. G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Lafleche, "Soil washing for metal removal: a review of physical/ chemical technologies and field applications", J. Hazard. Mater., 152(1), 1 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.043
  16. S. J. Chang, W. S. Liao, C. J. Ciou, J. T. Lee, and C. C. Li, "An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability", J. Colloid. Interface Sci., 329(2), 300 (2009). https://doi.org/10.1016/j.jcis.2008.10.011
  17. Y. C. Chen, C. C. Tsai, and Y. D. Lee, "Preparation and properties of silylated PTFE/$SiO_2$ organic-inorganic hybrids via sol-gel process", Journal of Polymer Science Part A: Polymer Chemistry, 42(7), 1789 (2004). https://doi.org/10.1002/pola.20033
  18. X. Zhang, H. Chen, Y. Ma, C. Zhao, and W. Yanga, "Preparation and dielectric properties of core-shell structural composites of poly (1H, 1H, 2H, 2H-perfluorooctyl methacrylate)@ $BaTiO_3$ nanoparticles", Applied Surface Science, 277, 121 (2013). https://doi.org/10.1016/j.apsusc.2013.03.178
  19. M. Iijima, N. Sato, I. W. Lenggoro, and H. Kamiya, "Surface modification of $BaTiO_3$ particles by silane coupling agents in different solvents and their effect on dielectric properties of $BaTiO_3$/epoxy composites", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 88 (2009). https://doi.org/10.1016/j.colsurfa.2009.10.005
  20. S. S. Chee and J. H. Lee, "Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent", J. Microelectron. Packag. Soc., 21(3), 57 (2014). https://doi.org/10.6117/kmeps.2014.21.3.057
  21. G. McHale, N. J. Shirtcliffe, and M. I. Newton, "Contactangle hysteresis on super-hydrophobic surfaces", Langmuir, 20(23), 10146 (2004). https://doi.org/10.1021/la0486584
  22. M. Luo, J.-Q. Zhao, W. Tang, and C.-S. Pu, "Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of $TiO_2$ nanoparticles", Applied Surface Science, 249(1-4), 76 (2005). https://doi.org/10.1016/j.apsusc.2004.11.054