DOI QR코드

DOI QR Code

Carbon Nanotube Passivation layer for Increasing the Solar Water Splitting Performance of CdS/CuInGaSe Photocathode

  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Ko, Young-Hee (Kumhotire R&D center) ;
  • Park, Jun-Beom (Korea Photonics Technology Institute) ;
  • Ko, Hang-Ju (Korea Photonics Technology Institute) ;
  • Ryu, Sang-Wan (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Ha, Jun-Seok (Optoelectronics Convergence Research Center, Chonnam National University)
  • Received : 2019.12.16
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

We report the fabrication of a CdS/CuInGaSe (CdS/CIGS) structure with carbon nanotubes and its application as a photocathode for photoelectrochemical water splitting. CIGS thin films were fabricated using co-evaporation by RF magnetron sputtering, while CdS was fabricated by chemical bath deposition. Spray coated multi-wall carbon nanotube (CNT) film on CdS/CIGS thin film was investigated as a photocathode. The CNT-coated CdS/CIGS showed superior photocurrent density and exhibited improved photostability.

Keywords

References

  1. A. Fujishima, and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238 (5358), 37 (1972). https://doi.org/10.1038/238037a0
  2. S. D. Tilley, M. Cornuz, K. Sivula, and M. Gratzel, "Light Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis", Angew. Chem. Int. Ed., 49(36), 6405 (2010). https://doi.org/10.1002/anie.201003110
  3. F. Lin, and S. W. Boettcher, "Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes", Nat. Mater., 13(1), 81 (2013). https://doi.org/10.1038/nmat3811
  4. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, "Preparation of p-Type $CaFe_2O_4$ Photocathodes for Producing Hydrogen from Water", J. Am. Chem. Soc., 132(49), 17343 (2010). https://doi.org/10.1021/ja106930f
  5. K. Nakaoka, J. Ueyama, and K. Ogura, "Photoelectrochemical Behavior of Electrodeposited CuO and $Cu_2O$ Thin Films on Conducting Substrates", J. Electrochem. Soc., 151(10), C661 (2004). https://doi.org/10.1149/1.1789155
  6. J. Jian, G. Jiang, R. van de Krol, B. Wei, and H. Wang, "Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation", Nano Energy, 51, 457 (2018). https://doi.org/10.1016/j.nanoen.2018.06.074
  7. H. Bae, S. W. Bang, J. -W. Ju and J. -S. Ha, "Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting", J. Microelectron. Packag. Soc., 25(3), 15 (2018).
  8. H. Kim, H. Bae, S.-J. Kang, and J.-S. Ha, "$MnO_2$ co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). https://doi.org/10.6117/kmeps.2016.23.4.113
  9. S. W. Bang, H. Kim, H. Bae, J.-W. Ju, S.-J. Kang, and J.-S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN", J. Microelectron. Packag. Soc., 24(4), 59 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.059
  10. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, "Enhanced photoresponse of $Cu(In,Ga)Se_2/CdS$ heterojunction fabricated using economical non-vacuum methods", Electron. Mater. Lett., 11(4), 618 (2015). https://doi.org/10.1007/s13391-014-4387-9
  11. S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim, and K. Yoon, "Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique", Cur. Appl. Phys., 10(4), 990 (2010). https://doi.org/10.1016/j.cap.2009.11.082
  12. G. Park, J. Park, J.-S. Ha, and H. -J. Ko, "The Effect of Se Content in Precursors on the Properties of $CuInSe_2$ Films", Korean J. Met. Mater., 51, 843 (2013). https://doi.org/10.3365/KJMM.2013.51.11.843
  13. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, "Double- Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation", Nano Lett., 10(3), 1088 (2010). https://doi.org/10.1021/nl100250z
  14. W. Shangguan, and A. Yoshida, "Synthesis and photocatalytic properties of CdS-intercalated metal oxides", Solar Energy Mater. & Solar Cells, 69, 189 (2001). https://doi.org/10.1016/S0927-0248(01)00020-4
  15. S. Tawkaew, Y. Fujishiro, S. Yin, and T. Sato, "Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation", Colloids Surf. A: Physicochem. Eng. Asp., 179(2-3), 139 (2001). https://doi.org/10.1016/S0927-7757(00)00649-X
  16. M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, and K. Domen, "Stable Hydrogen Evolution from CdS-Modified $CuGaSe_2$ Photoelectrode under Visible-Light Irradiation", J. Am. Chem. Soc., 135(10), 3733 (2013). https://doi.org/10.1021/ja312653y
  17. M. G. Mali, H. Yoon, B. N. Joshi, H. Park, S. S. Al-Deyab, D. C. Lim, S. Ahn, C. Nervi, and S. S. Yoon, "Enhanced Photoelectrochemical Solar Water Splitting Using a Platinum- Decorated CIGS/CdS/ZnO Photocathode", ACS Appl. Mater. Interfaces., 7(38), 21619 (2015). https://doi.org/10.1021/acsami.5b07267
  18. J.-B. Park, H.-J. Park, H. Bae, T. Jeong, J.-H. Han, J. S. Kwak, and J.-S. Ha, "Development of nanoscale Ni-embedded single-wall carbon nanotubes by electroless plating for transparent conductive electrodes of 375 nm AlGaN-based ultraviolet light-emitting diodes", Applied Physics Express, 9(8), 082601 (2016). https://doi.org/10.7567/APEX.9.082601
  19. Y. Ko, G. Park, E. Kim, H. Bae, H.-J. Ko, and J.-S. Ha, "A Research on Improvement of Hydrogen Generation using CdS/CIGS Photo-Electrode in Photoelectrochemical System", Korean J. Met. Mater., 53, 365 (2014).