DOI QR코드

DOI QR Code

광릉긴나무좀, 왕녹나무좀, 노랑애나무좀 성충에 대한 포스핀의 훈증활성

Fumigant Activity of Phosphine Against Three Wood Boring Beetles, Platypus koryoensis, Cryphalus fulvus, and Xyleborus mutilatus

  • Cho, Sung Woo (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Sung Il (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Hyun Kyung (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, Chungbuk National University)
  • 투고 : 2018.11.23
  • 심사 : 2019.02.02
  • 발행 : 2019.03.01

초록

많은 산림해충들은 목재검역에서 문제가 되고 있어 포스핀($PH_3$)을 이용하여 광릉긴나무좀, 왕녹나무좀, 노랑애나무좀의 성충에 대한 살충 활성을 조사하였다. 3종의 나무좀류에 대하여 99% 살충활성을 보이는 LCT값은 각각 3.192 (광릉긴나무좀), 0.994 (왕녹나무좀), $0.501mg{\cdot}h/L$ (노랑애나무좀) 순으로 나타났다. 포스핀을 처리한 3종의 나무좀류는 시간이 지남에 따라 살충활성도 증가하였다. 특히 광릉긴나무좀에서는 0.4 mg/L 이상의 농도에서 약제처리 7일 후에 100%의 사충률을 보였다. 이러한 결과로 볼 때 포스핀이 3종의 목재해충 성충에 대해 메칠브로마이드의 대체훈증제로 이용될 수 있을 것으로 판단된다.

Many forest pests have caused problems for wood quarantine. The fumigation activity of phosphine ($PH_3$) was examined for the adults of three wood-boring insect pests. The $LCT_{99}$ values for Platypus koryoensis, Cryphalus fulvus, and Xyleborus mutilates were 3.192, 0.994, and $0.501mg{\cdot}h/L$ at $20^{\circ}C$, respectively. The effectiveness of $PH_3$ was increasingly time dependent for all doses tested in all three species. In particular, P. koryoensis showed 100% mortality at doses higher than 0.4 mg/L 7 days after fumigation. These results indicate that methyl bromide could be substituted for $PH_3$ for adults of these three species of wood pest.

키워드

OOGCBV_2019_v58n1_31_f0001.png 이미지

Fig. 1. Mortality of 3 wood-boring pests exposed to different concentrations of PH 3. A, C. fulvus ; B, X. mutilatus ; C, P. koryoensis (n = 45, each concentration respectively).

Table 1. Toxicity of PH3 against Cryphalus fulvus, Xyleborus mutilates and Platypus koryoensis fumigated in desiccators at 20°C for 24 h

OOGCBV_2019_v58n1_31_t0001.png 이미지

참고문헌

  1. Barak, A.V., Wang, Y., Xu, L., Rong, L., Hang, X., Zhan, G., 2005. Methyl bromide as a quarantine treatment for Anoplophora glabripennis (Coleoptera: Cerambycidae) in regulated wood packing material. J. Econ. Entomol. 98, 1911-1916. https://doi.org/10.1093/jee/98.6.1911
  2. Brash, D.W., Page, B.B.C., 2009. Review of phosphine research for control of timber quarantine pests. Plant and Food Research Confidential Report No. 2370. 28 pp. The New Zealand Institute for Plant & Food Research Limited. Palmerston North, New Zealand.
  3. Chaudhry, M.Q., 1997. A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored‐product insects. Pestic. Sci. 49, 213-228. https://doi.org/10.1002/(SICI)1096-9063(199703)49:3<213::AID-PS516>3.0.CO;2-#
  4. Choi, K.S., Kim, H.K., Lee, B.H., Kim, B.S., Yang, J.O., Koo, H.N., Kim, G.H., 2014. Fumigant toxicity of phosphine to the Japanese termite, Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae). J. Stored. Prod. Res. 57, 24-29. https://doi.org/10.1016/j.jspr.2014.01.003
  5. Choi, W.I., Kim, K.M., Koh, S.H., Nam, Y.W., 2017. A study on the community of xylophagous beetles in Korean white pine, Pinus koraiensis, forests. Korean J. Appl. Entomol. 56, 41-49. https://doi.org/10.5656/KSAE.2016.11.0.045
  6. Ducom, P.J.F., 2006. The return of the fumigants, pp. 510-516, in: Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., dos Santos, J.P., Biagi, J.D., Celaro, J.C., Faroni, L.R.D.A., Bortolini, L.de O.F., Sartori, M.R., Elias, M.C., Guedes, R.N.C., da Fonseca, R.G., Scussel, V.M. (Eds.), Proceedings of the Ninth International Working Conference on Stored Product Protection, 15-18 October 2006, Campinas, Brazil, Brazilian Post-harvest Association, Campinas, Brazil.
  7. Fields, P.G., White, N.D., 2002. Alternatives to methyl bromide treatments for stored product and quarantine insects 1. Annu. Rev. Entomol. 47, 331-359. https://doi.org/10.1146/annurev.ento.47.091201.145217
  8. Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385. https://doi.org/10.1146/annurev.ento.49.061802.123314
  9. Hulcr, J., Stelinski, L.L., 2017. The ambrosia symbiosis: From evolutionary ecology to practical management. Annu. Rev. Entomol. 62, 285-303. https://doi.org/10.1146/annurev-ento-031616-035105
  10. Kasson, M.T., Wickert, K.L., Stauder, C.M., Macias, A.M., Berger, M.C., Simmons, D.R., Short, D.P., DeVallance, D.B., Hulcr, J., 2016. Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecol. 23, 86-96. https://doi.org/10.1016/j.funeco.2016.07.002
  11. Kim, H.K., Lee, S.W., Kim, J.I., Yang, J.O., Koo, H.N., Kim, G.H., 2015. Synergistic effects of oxygen on phosphine and ethyl formate for the control of Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Econ. Entomol. 108, 2572-2580. https://doi.org/10.1093/jee/tov244
  12. Kyung, Y., Kim, H.K., Lee, J.S., Kim, B.S., Yang, J.O., Lee, B.H., Koo, H.N., Kim, G.H., 2018. Efficacy and phytotoxicty of phosphine as fumigants for Frankliniella occidentalis (Thysanoptera: Thripidae) on asparagus. J. Econ. Entomol. 111, 2644-2651.
  13. Liu, B., Zhang, F., Wang, Y., 2010. Toxicity of phosphine to Carposina niponensis (Lepidoptera: Carposinadae) at low temperature. J. Econ. Entomol. 103, 1988-1993. https://doi.org/10.1603/EC09096
  14. Llacer, E., Jacas, J.A., 2010. Efficacy of phosphine as a fumigant against Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in palms. Span. J. Agric. Res. 8, 775-779. https://doi.org/10.5424/sjar/2010083-1278
  15. Moon, Y.M., 2012. Development of optimal methods of phosphine fumigation to control insect pests on cut flowers and nursery stocks. Ph.D. Thesis, Korea University, Seoul, Korea.
  16. Oogita, T., Soma, Y., Mizobuchi, M., Oda, Y., Matsuoka, I., Kawakami, F., 1997. Mortality tests for forest insect pests by phosphine fumigation. Res. Bull. Plant Protec. Ser. (Japan) 38, 17-20.
  17. Pant, H., Tripathi, S., 2012. Evaluation of aluminum phosphide against wood-destroying insects. J. Econ. Entomol. 105, 135-139. https://doi.org/10.1603/EC11137
  18. Ren, Y., Lee, B., Padovan, B., 2011. Penetration of methyl bromide, sulfuryl fluoride, ethanedinitrile and phosphine into timber blocks and the sorption rate of the fumigants. J. Stored Prod. Res. 47, 63-68. https://doi.org/10.1016/j.jspr.2010.04.006
  19. Soma, Y., Yabuta, S., Mizoguti, M., Kishino, H., Matsuoka, I, Goto, M., Akagawa, T., Ikeda, T., Kawakami, F., 1996. Susceptibility of forest insect pests to sulfuryl fluoride. 1.Wood borers and bark beetles. Res. Bull. Plant Protec. Ser. 32, 69-76.
  20. Su, N.Y., Scheffrahn, R.H., 1986. Field comparison of sulphuryl fluoride susceptibility among three termite species (Isoptera: Kalotermitidae, Rhinotermitidae) during structural fumigation. J. Econ. Entomol. 79, 903-908. https://doi.org/10.1093/jee/79.4.903
  21. Suh, D.Y., Hyun, M.W., Kim, S.H., Seo, S.T., Kim, K.H., 2011. Filamentous fungi isolated from Platypus koryoensis, the insect vector of oak wilt disease in Korea. Mycobiology 39, 313-316. https://doi.org/10.5941/MYCO.2011.39.4.313
  22. UNEP, 2006. Handbook for the Montreal protocol on substances that deplete the Ozone layer, pp. xi+482, Nairobi.
  23. Yang, J.O., Park, Y., Kim, I.H., Kim, G.H., Kim, B.S., Lee, B.H., Ren, Y.L., 2016. A combination treatment using ethyl formate and phosphine to control Planococcus citri (Hemiptera: Pseudococcidae) on pineapples. J. Econ. Entomol. 109, 2355-2363. https://doi.org/10.1093/jee/tow222