Acknowledgement
Supported by : Sungshin Women’s University
References
-
J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in
$\mathbb{P}^n$ and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405 - C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010), no. 3, 399-417. https://doi.org/10.1090/S1056-3911-09-00530-X
- C. Bocci and B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1175-1190. https://doi.org/10.1090/S0002-9939-09-10108-9
- E. Carlini, L. Chiantini, and A. V. Geramita, Complete intersections on general hypersurfaces, Michigan Math. J. 57 (2008), 121-136. https://doi.org/10.1307/mmj/1220879400
- E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
- E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192. https://doi.org/10.1090/S0002-9939-2011-11204-8
- S. Cooper, B. Harbourne, and Z. Teitler, Combinatorial bounds on Hilbert functions of fat points in projective space, J. Pure Appl. Algebra 215 (2011), no. 9, 2165-2179. https://doi.org/10.1016/j.jpaa.2010.12.006
- F. Galetto, Anthony V. Geramita, Y. S. Shin, and A. Van Tuyl, The Symbolic Defect of an Ideal, In preparation.
-
A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in
$\mathbb{P}^n$ , J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034 - A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
-
A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in
$\mathbb{P}^2$ , J. Algebra 298 (2006), no. 2, 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035 - M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. https://doi.org/10.2307/2373744
-
Y. R. Kim and Y. S. Shin, Star-configurations in
$\mathbb{P}^n$ and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873. https://doi.org/10.1080/00927872.2015.1027373 -
J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in
$\mathbb{P}^n$ , J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026 - Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
-
Y. S. Shin, Star-configurations in
$\mathbb{P}^2$ having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242. https://doi.org/10.1080/00927872.2012.656783 - O. Zariski and P. Samuel, Commutative Algebra. Vol. II, reprint of the 1960 edition, Springer-Verlag, New York, 1975.