DOI QR코드

DOI QR Code

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime and Ocean University)
  • 투고 : 2018.10.24
  • 심사 : 2018.11.23
  • 발행 : 2019.01.10

초록

In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

키워드

과제정보

연구 과제 주관 기관 : Korea Maritime and Ocean University

참고문헌

  1. Benfield, W.A. and Hruda, R.F. (1971), "Vibration analysis of structures by component mode substitution", AIAA J., 9, 1255-1261. https://doi.org/10.2514/3.49936
  2. Bennighof, J.K. and Lehoucq, R.B. (2004), "An automated multilevel substructuring method for eigenspace computation in linear elastodynamics", SIAM J. Sci. Comput., 25(6), 2084-2106. https://doi.org/10.1137/S1064827502400650
  3. Boo, S.H. and Lee, P.S. (2017), "A dynamic condensation method using algebraic substructuring", Int. J. Numer. Meth. Eng., 109(12), 1701-1720. https://doi.org/10.1002/nme.5349
  4. Boo, S.H. and Lee, P.S. (2017), "An iterative algebraic dynamic condensation method and its performance", Comput. Struct., 182, 419-429. https://doi.org/10.1016/j.compstruc.2016.12.011
  5. Boo, S.H. and Oh, M.H. (2017) "Automated static condensation method for local analysis of large finite element models", Struct. Eng. Mech., 61(6), 807-816. https://doi.org/10.12989/sem.2017.61.6.807
  6. Boo, S.H., Kim, J.H. and Lee, P.S. (2018), "Towards improving the enhanced Craig-Bampton method", Comput. Struct., 196, 63-75. https://doi.org/10.1016/j.compstruc.2017.10.017
  7. Chen, S. and Rong, F. (2002), "A new method of structural modal reanalysis for topological modifications", Fin. Elem. Analy. Des., 38(11), 1015-1028. https://doi.org/10.1016/S0168-874X(01)00111-1
  8. Craig, R.R. and Bampton, M.C.C. (1968), "Coupling of substructures for dynamic analysis", AIAA J., 6(7), 1313-1319. https://doi.org/10.2514/3.4741
  9. George, A. (1973), "Nested dissection of a rectangular finite element mesh", SIAM J. Numer. Analy., 10(2), 345-363. https://doi.org/10.1137/0710032
  10. Givoli, D., Barbone, P.E. and Patlashenko, I. (2004), "Which are the important modes of a subsystem?", Int. J. Numer. Meth. Eng., 59(2), 1657-1678. https://doi.org/10.1002/nme.935
  11. Han, J.S. (2014), "Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems", Struct. Eng. Mech., 50(1), 19-36. https://doi.org/10.12989/sem.2014.50.1.019
  12. Hendrickson, B and Rothberg, E. (1997), "Effective sparse matrix ordering: Just around the bend", Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing, Minnesota, U.S.A., March.
  13. Hong, S.K., Epureanu, B.I. and Castanier, M.P. (2013), "Next-generation parametric reduced-order models", Mech. Syst. Sign. Pr., 37(1-2), 403-421. https://doi.org/10.1016/j.ymssp.2012.12.012
  14. Jian-Jun, H., Xiang-Zi, C. and Bin, X. (2015), "Structural modal reanalysis for large, simultaneous and multiple type modifications", Mech. Syst. Sign. Pr., 62, 207-217. https://doi.org/10.1016/j.ymssp.2015.03.019
  15. Kaplan, M.F. (2001), "Implementation of automated multi-level substructuring for frequency response analysis of structures", Ph.D. Dissertation, University of Texas at Austin, Austin, TX.
  16. Karypis, G. and Kumar, V. (1998), "METIS v4.0, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices", Technical Report, University of Minnesota, Minneapolis, MN, U.S.A.
  17. Kaveh, A and Fazli, H. (2011), "Approximate eigensolution of locally modified regular structures using a substructuring technique", Comput. Struct., 89(5-6), 529-537. https://doi.org/10.1016/j.compstruc.2010.12.013
  18. Kim, J.H., Kim, J. and Lee, P.S. (2017), "Improving the accuracy of the dual Craig-Bampton method", Compt. Struct., 191, 22-32. https://doi.org/10.1016/j.compstruc.2017.05.010
  19. Leung, Y.T. (1979), "An accurate method of dynamic substructuring with simplified computation", Int. J. Numer. Meth. Eng., 14(8), 1241-1256. https://doi.org/10.1002/nme.1620140809
  20. Papadimiriou, C. and Papadioti, D.C. (2013), "Component mode synthesis technique for finite element model updating", Comput. Struct., 126, 15-28. https://doi.org/10.1016/j.compstruc.2012.10.018
  21. Pastor, M., Binda, M. and Harcarik T. (2012), "Modal assurance criterion", Proc. Eng., 48, 543-548. https://doi.org/10.1016/j.proeng.2012.09.551
  22. Perdahcioglu, D., Ellenbroek, M., Geijselaers, H. and De Boer, A. (2011), "Updating the Craig-Bampton reduction basis for efficient structural reanalysis", Int. J. Numer. Meth. Eng., 85(5), 607-624. https://doi.org/10.1002/nme.2983
  23. Rubin, S. (1975), "Improved component-mode representation for structural dynamic analysis", AIAA J., 13(8), 995-1006. https://doi.org/10.2514/3.60497
  24. Soize, C. and Mziou, S. (2003), "Dynamic substructuring in the medium-frequency range", AIAA J., 41(6), 1113-1118. https://doi.org/10.2514/2.2052

피인용 문헌

  1. 강성응축기법을 이용한 국부 비선형 정적 해석 vol.27, pp.1, 2019, https://doi.org/10.7837/kosomes.2021.27.1.193