DOI QR코드

DOI QR Code

Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University) ;
  • Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
  • Received : 2018.04.07
  • Accepted : 2018.11.13
  • Published : 2019.01.10

Abstract

In this research, the effect of bedding layer on the tensile failure mechanism of rocks has been investigated using PFC2D. For this purpose, firstly calibration of PFC2d was performed using Brazilian tensile strength. Secondly Brazilian test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally, 21 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than 15, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be noted that number of cracks decrease with increasing the layer thickness. Also, Brazilian tensile strength is minimum when bedding layer angle is between $45^{\circ}$ and $75^{\circ}$. The maximum one is related to layer angle of $90^{\circ}$.

Keywords

References

  1. Al-Harthi, A.A. (1998), "Effect of planar structures on the anisotropy of ranyah sandstone Saudi Arabia", Eng. Geol., 50(1-2), 49-57. https://doi.org/10.1016/S0013-7952(97)00081-1
  2. Amadei B, Rogers, J.D. and Goodman, R.E. (1983), "Elastic constants and tensile strength of anisotropic rocks", Proceedings of the 5th International Congress of Rock Mechanics, A189-196.
  3. Amadei B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  4. Amadei, B. (1982), "The influence of rock anisotropy on measurement of stresses in-situ", Ph.D. Dissertation, University of California, Berkeley, U.S.A.
  5. Barla, G. (1974), "Rock anisotropy: Theory and laboratory testing", Rock Mech., 131-169. https://doi.org/10.1007/BF01239034
  6. Bi, J., Zhou, X.P. and Xu, X.M. (2017), "Numerical simulation of failure process of rock-like materials subjected to impact loads", Int. J. Geomech., 17(3), 04016073. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000769
  7. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
  8. Berenbaum, R. and Brodie, I. (1959), "The tensile strength of coal", J. Inst. Fuel, 32(222), 320-326.
  9. Chen, C.S., Pan, E. and Amadei, B. (1998), "Determination strength of anisotropic Brazilian tests of deformability and tensile rock using", Int. J. Rock Mech. Min. Sci., 35(1), 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
  10. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  11. Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock Mech. Min. Sci., 45(8), 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
  12. Chou, Y.C. and Chen, C.S. (2008), "Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure", Int. J. Numer. Anal. Meth. Geomech., 32(3), 219-234. https://doi.org/10.1002/nag.619
  13. Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159(1), 51-62. https://doi.org/10.1007/s10704-009-9382-z
  14. Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock Mech. Min. Sci., 38(2), 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
  15. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math Mech. Sol., 22(5), 1205-1218. https://doi.org/10.1177/1081286515625436
  16. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  17. Goodman, R.E. (1993), Engineering Geology-Rock in Engineering Construction, John Wiley and Sons, Inc., New York, U.S.A.
  18. Haeri, H. (2015), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  19. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 29(5), 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7
  20. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106. https://doi.org/10.1134/S1062739115040296
  21. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  22. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  23. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  24. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  25. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  26. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  27. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  28. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  29. Hobbs, D.W. (1963), "The strength and stress-strain characteristics of coal in triaxial compression", J. Geol., 72(2), 214-223. https://doi.org/10.1086/626977
  30. Hoek, E. (1964) "Fracture of transversely isotropic rock", J. S. Afr. Inst. Min. Met., 64, 501-518.
  31. Horino, F.G. and Ellickson, M.L. (1970), A Method of Estimating Strength of Rock Containing Planes of Weakness, Report of Investigation 744, US Bureau of Mines.
  32. Itasca Consulting Group Inc. (2004) Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Minneapolis, U.S.A.
  33. Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 1-8.
  34. Kwasniewski, M. (1993), Mechanical Behavior of Transversely Isotropic Rocks, In: Hudson, J.A. (ed), Comprehensive Rock Engineering, Pergamon, Oxford, 1, 285-312.
  35. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  36. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  37. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  38. McLamore, R. and Gray, K.E. (1967), "The mechanical behavior of transversely isotropic sedimentary rocks", Trans. Am. Soc. Mech. Eng. Ser. B, 62-76.
  39. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  40. Nasseri, M.H., Rao, K.S. and Ramamurthy, T. (1997), "Failure mechanism in schistose rocks", Int. J. Rock Mech. Min. Sci., 34(3-4), 219.
  41. Nasseri, M.H.B., Rao, K.S. and Ramamurthy, T. (2003), "Anisotropic strength and deformational behavior of Himalayan schists", Int. J. Rock Mech. Min. Sci., 40(1), 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  42. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  43. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  44. Pinto, J.L. (1970), "Deformability of schistous rocks", Proceedings of the 2nd International Congress of Rock Mechanics.
  45. Pinto, J.L. (1979), "Determination of the elastic constants of anisotropic bodies by diametral compression tests", Proceedings of the 4th International Congress of rock Mechanics.
  46. Pinto, J.L. (1966), "Stresses and strains in anisotropic orthotropic body", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  47. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  48. Ramamurthy T. (1933), Strength, Modulus Responses of Anisotropic Rocks, In: Hudson, J.A., Editor, Comprehensive Rock Engineering, Pergamon Press, Oxford, 1, 313-329.
  49. Rodrigues (1966), "Anisotropy of granites: Modulus of elasticity and ultimate strength ellipsoids , joint systems, slope attitudes, and the correlations", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  50. Saeidi, O., Rasouli, V., GeranmayehVaneghi, R., Gholami, R. and Torabi, R. (2013), "A modified failure criterion for transversely isotropic rocks", Geosci. Front.
  51. Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5(6), 519-512. https://doi.org/10.1016/0148-9062(68)90039-9
  52. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  53. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  54. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  55. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels- experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  56. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  57. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Mech. Phys. Sol., 48(1), 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  58. Singh, J., Ramamurth, T. and Venkatappa, R.G. (1989), "Strength anisotropies in rocks", Ind. Geotech. J., 19(2), 147-166.
  59. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sand stone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  60. Tavallali, A. and Vervoort, A. (2010), "Failure of layered sandstone under Brazilian test conditions: Effect of micro-Scale parameters on macro-scale behaviour", Rock Mech. Rock Eng., 43(5), 641-645. https://doi.org/10.1007/s00603-010-0084-7
  61. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  62. Tien, Y.M. and Kuo, M.C. (2006), "An experimental investigation of the failure mechanism of simulated transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 43(8), 1163-1181. https://doi.org/10.1016/j.ijrmms.2006.03.011
  63. Tien, Y.M. and Tsao, P.F. (2000), "Preparation and mechanical properties of artificial transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 37(6), 1001-1012. https://doi.org/10.1016/S1365-1609(00)00024-1
  64. Wang, Y., Zhou, X.P. and Kou, M. (2018), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
  65. Yunteng, W., Zhou, X.P. and Shou, Y. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019
  66. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Proc.-Social Behav. Sci., 198, 2280-2289.
  67. Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock Mech. Min. Sci., 72, 54-60. https://doi.org/10.1016/j.ijrmms.2014.08.013
  68. Zhou, X.P., Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theoret. Appl. Fract. Mech., 57(1), 19-30. https://doi.org/10.1016/j.tafmec.2011.12.004
  69. Zhou, X.P., Bi, J., Qian, Q.H. (2015a), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
  70. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015b), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock Mech. Min. Sci., 80, 241-254. https://doi.org/10.1016/j.ijrmms.2015.09.006
  71. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001

Cited by

  1. Influence of “X” Fracture, Confining Pressure, and Temperature on Rock Masses’ Failure Process vol.2020, 2019, https://doi.org/10.1155/2020/1072161