Acknowledgement
Supported by : National Natural Science Foundation of China, China Institute of Water Resources and Hydropower
References
- Aliabadi, M.H. (1997), "Boundary element formulations in fracture mechanics", Appl. Mech. Rev., 50(2), 83-96. https://doi.org/10.1115/1.3101690
- Atluri, S.N. (2002), The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, California, U.S.A.
- Belytschko, T., Chen H., Xu J. and Zi, G. (2003), "Dynamic crack propagation based on loss of hypertonicity and a new discontinuous enrichment", Int. J. Numer. Meth. Eng., 58(12), 1873-1905. https://doi.org/10.1002/nme.941
- Belytschko T., Lu Y.Y. and Gu L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Liu W.K., Jun S. and Zhang Y.F. (1995), "Reproducing kernel particle methods in fluids", Int. J. Numer. Meth. Eng., 38(10), 1655-1679. https://doi.org/10.1002/nme.1620381005
- Belytschko T. and Black T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Bordas S., Rabczuk T. and Zi G. (2008), "Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment", Eng. Fract. Mech., 75(5), 943-960. https://doi.org/10.1016/j.engfracmech.2007.05.010
- Dong, Y.W. and Ren, Q.W. (2011), "An extended finite element method for modeling hydraulic fracturing in gravity dam", J. Hydraul. Eng., 42(11), 1361-1367.
- Dvorkin, E.N., Cuitino, A.M. and Gioia, G. (2010), "Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions", Int. J. Numer. Meth. Eng., 30(3), 541-564. https://doi.org/10.1002/nme.1620300311
- Elena, B. (2014), "XFEM with equivalent eigenstrain for matrix- inclusion interfaces", Comput. Mech., 53(5), 893-908. https://doi.org/10.1007/s00466-013-0938-4
- Golebiewska Herrmann, A. and Herrmann, G. (1981), "On energy-release rates for a plan crack", J. Appl. Mech., 48(3), 525-528. https://doi.org/10.1115/1.3157667
- Himanshu, P. and Akhilendra, S. (2012), "Numerical simulation of bi-material interfacial cracks using EFGM and XFEM", Int. J. Mech. Mater. Des., 8(1), 9-36. https://doi.org/10.1007/s10999-011-9173-3
- Jrad, H., Mars, J., Wali, M. and Dammak, F. (2018), "An extended finite element method for modeling elastoplastic FGM plate-shell type structures", Struct. Eng. Mech., 68(3), 299-312. https://doi.org/10.12989/SEM.2018.68.3.299
- Jiang, Y., Tay, T.E., Chen, L. and Sun, X.S. (2013), "An edge-based smoothed XFEM for fracture in composite materials", Int. J. Fract., 179(1-2), 179-199. https://doi.org/10.1007/s10704-012-9786-z
- Kim, J.K., Kim, K.H. and Yang, J.H. (2001), "Thermal analysis of hydration heat in concrete structures with pipe-cooling system", Comput. Struct., 79(2), 163-171. https://doi.org/10.1016/S0045-7949(00)00128-0
- Linder, C. and Armero, F. (2007), "Finite elements with embedded strong discontinuities for the modeling of failure in solids", Int. J. Numer. Meth. Eng., 72(12), 1391-1433. https://doi.org/10.1002/nme.2042
- Linder, C. and Armero, F. (2009), "Finite elements with embedded branching", Fin. Elem. Anal. Des., 45(4), 280-293. https://doi.org/10.1016/j.finel.2008.10.012
- Liu G., Hu Y., Li Q. and Zuo, Z. (2013), "XFEM for thermal crack of massive concrete", Math. Probl. Eng., 12, 261-294.
- Moes, N., Dolvow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Pan, E. and Yuan, F.G. (2000), "Boundary element analysis of three-dimensional cracks in anisotropic solids", Int. J. Numer. Meth. Eng., 48(2), 211-237. https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<211::AID-NME875>3.0.CO;2-A
- Sfantos, G.K. and Aliabadi, M.H. (2007), "Multi-scale boundary element modelling of material degradation and fracture", Comput. Meth. Appl. M., 196(7), 1310-1329. https://doi.org/10.1016/j.cma.2006.09.004
- Simpson, R.N., Bordas, S.P.A., Trevelyan, J. and Rabczuk, T. (2012), "A two-dimensional isogeometric boundary element method for elastostatic analysis", Comput. Meth. Appl. M., 209-212(324), 87-100. https://doi.org/10.1016/j.cma.2011.08.008
- Stolarska, M., Chopp, L., Moes, N. and Belytschko, T. (2016), "Modeling crack growth by level sets in the extended finite element method", Int. J. Numer. Meth. Eng., 51(8), 943-960. https://doi.org/10.1002/nme.201
- Schutter, G.D. (2002), "Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws", Comput. Struct., 80(27-30), 2035-2042. https://doi.org/10.1016/S0045-7949(02)00270-5
- Sneddon, I.N. (1946), "The distribution of stress in the neighborhood of a crack in an elastic solid", Proc. Roy. Soc. Ser. A, 187(1009), 229-260.
- Waller, V., D'Aloia, L., Cussigh, F. and Lecrux, S. (2004), "Using the maturity method in concrete cracking control at early ages", Cement Concrete Comp., 26(5), 589-599. https://doi.org/10.1016/S0958-9465(03)00080-5
- Wang, J., Navi, P. and Huet, C. (1997), "Numerical analysis of crack propagation in tension specimens of concrete considered as a 2D multicracked granular composite", Mater. Struct., 30(1), 11-21. https://doi.org/10.1007/BF02498735
- Wang, J. and Yan, P. (2013), "Evaluation of early age mechanical properties of concrete in real structure", Comput. Concrete, 12(1), 53-64. https://doi.org/10.12989/cac.2013.12.1.053
- Zhu, B.F. (2010), "On pipe cooling of concrete dams", J. Hydraul. Eng., 41(5), 505-513.
- Zhu, Z.Y., Chen, W.M., Qiang, S., Zhang, G.X. and Liu, Y. (2017), "An improvement on the concrete exothermic models considering self-temperature duration", Comput. Concrete, 19(6), 659-666. https://doi.org/10.12989/CAC.2017.19.6.659
- Zhu, Z.Y., Qiang, S. and Chen, W.M. (2013), "A new method solving the temperature field of concrete around cooling pipes", Comput. Concrete, 11(5), 441-462. https://doi.org/10.12989/cac.2013.11.5.441
- Zuo, Z., Hu, Y., Li Q.B. and Liu, G. (2015), "An extended finite element method for pipe embedded plane thermal analysis", Fin. Elem. Anal. Des., 102, 52-64. https://doi.org/10.1016/j.finel.2015.05.002
- Zhu, B.F. (1998), Thermal Stress and Temperature Control of Mass Concrete, China Electric Power Press, Beijing, China.
Cited by
- Simulation of the temperature field for massive concrete structures using an interval finite element method vol.37, pp.7, 2020, https://doi.org/10.1108/ec-10-2019-0456
- Thermal cracking assessment for nuclear containment buildings using high-strength concrete vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.429