DOI QR코드

DOI QR Code

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research) ;
  • Zhang, Guoxin (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research) ;
  • Liu, Yi (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research) ;
  • Wang, Zhenhong (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research)
  • Received : 2018.03.06
  • Accepted : 2018.11.16
  • Published : 2019.01.10

Abstract

Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, China Institute of Water Resources and Hydropower

References

  1. Aliabadi, M.H. (1997), "Boundary element formulations in fracture mechanics", Appl. Mech. Rev., 50(2), 83-96. https://doi.org/10.1115/1.3101690
  2. Atluri, S.N. (2002), The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, California, U.S.A.
  3. Belytschko, T., Chen H., Xu J. and Zi, G. (2003), "Dynamic crack propagation based on loss of hypertonicity and a new discontinuous enrichment", Int. J. Numer. Meth. Eng., 58(12), 1873-1905. https://doi.org/10.1002/nme.941
  4. Belytschko T., Lu Y.Y. and Gu L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  5. Liu W.K., Jun S. and Zhang Y.F. (1995), "Reproducing kernel particle methods in fluids", Int. J. Numer. Meth. Eng., 38(10), 1655-1679. https://doi.org/10.1002/nme.1620381005
  6. Belytschko T. and Black T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  7. Bordas S., Rabczuk T. and Zi G. (2008), "Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment", Eng. Fract. Mech., 75(5), 943-960. https://doi.org/10.1016/j.engfracmech.2007.05.010
  8. Dong, Y.W. and Ren, Q.W. (2011), "An extended finite element method for modeling hydraulic fracturing in gravity dam", J. Hydraul. Eng., 42(11), 1361-1367.
  9. Dvorkin, E.N., Cuitino, A.M. and Gioia, G. (2010), "Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions", Int. J. Numer. Meth. Eng., 30(3), 541-564. https://doi.org/10.1002/nme.1620300311
  10. Elena, B. (2014), "XFEM with equivalent eigenstrain for matrix- inclusion interfaces", Comput. Mech., 53(5), 893-908. https://doi.org/10.1007/s00466-013-0938-4
  11. Golebiewska Herrmann, A. and Herrmann, G. (1981), "On energy-release rates for a plan crack", J. Appl. Mech., 48(3), 525-528. https://doi.org/10.1115/1.3157667
  12. Himanshu, P. and Akhilendra, S. (2012), "Numerical simulation of bi-material interfacial cracks using EFGM and XFEM", Int. J. Mech. Mater. Des., 8(1), 9-36. https://doi.org/10.1007/s10999-011-9173-3
  13. Jrad, H., Mars, J., Wali, M. and Dammak, F. (2018), "An extended finite element method for modeling elastoplastic FGM plate-shell type structures", Struct. Eng. Mech., 68(3), 299-312. https://doi.org/10.12989/SEM.2018.68.3.299
  14. Jiang, Y., Tay, T.E., Chen, L. and Sun, X.S. (2013), "An edge-based smoothed XFEM for fracture in composite materials", Int. J. Fract., 179(1-2), 179-199. https://doi.org/10.1007/s10704-012-9786-z
  15. Kim, J.K., Kim, K.H. and Yang, J.H. (2001), "Thermal analysis of hydration heat in concrete structures with pipe-cooling system", Comput. Struct., 79(2), 163-171. https://doi.org/10.1016/S0045-7949(00)00128-0
  16. Linder, C. and Armero, F. (2007), "Finite elements with embedded strong discontinuities for the modeling of failure in solids", Int. J. Numer. Meth. Eng., 72(12), 1391-1433. https://doi.org/10.1002/nme.2042
  17. Linder, C. and Armero, F. (2009), "Finite elements with embedded branching", Fin. Elem. Anal. Des., 45(4), 280-293. https://doi.org/10.1016/j.finel.2008.10.012
  18. Liu G., Hu Y., Li Q. and Zuo, Z. (2013), "XFEM for thermal crack of massive concrete", Math. Probl. Eng., 12, 261-294.
  19. Moes, N., Dolvow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  20. Pan, E. and Yuan, F.G. (2000), "Boundary element analysis of three-dimensional cracks in anisotropic solids", Int. J. Numer. Meth. Eng., 48(2), 211-237. https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<211::AID-NME875>3.0.CO;2-A
  21. Sfantos, G.K. and Aliabadi, M.H. (2007), "Multi-scale boundary element modelling of material degradation and fracture", Comput. Meth. Appl. M., 196(7), 1310-1329. https://doi.org/10.1016/j.cma.2006.09.004
  22. Simpson, R.N., Bordas, S.P.A., Trevelyan, J. and Rabczuk, T. (2012), "A two-dimensional isogeometric boundary element method for elastostatic analysis", Comput. Meth. Appl. M., 209-212(324), 87-100. https://doi.org/10.1016/j.cma.2011.08.008
  23. Stolarska, M., Chopp, L., Moes, N. and Belytschko, T. (2016), "Modeling crack growth by level sets in the extended finite element method", Int. J. Numer. Meth. Eng., 51(8), 943-960. https://doi.org/10.1002/nme.201
  24. Schutter, G.D. (2002), "Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws", Comput. Struct., 80(27-30), 2035-2042. https://doi.org/10.1016/S0045-7949(02)00270-5
  25. Sneddon, I.N. (1946), "The distribution of stress in the neighborhood of a crack in an elastic solid", Proc. Roy. Soc. Ser. A, 187(1009), 229-260.
  26. Waller, V., D'Aloia, L., Cussigh, F. and Lecrux, S. (2004), "Using the maturity method in concrete cracking control at early ages", Cement Concrete Comp., 26(5), 589-599. https://doi.org/10.1016/S0958-9465(03)00080-5
  27. Wang, J., Navi, P. and Huet, C. (1997), "Numerical analysis of crack propagation in tension specimens of concrete considered as a 2D multicracked granular composite", Mater. Struct., 30(1), 11-21. https://doi.org/10.1007/BF02498735
  28. Wang, J. and Yan, P. (2013), "Evaluation of early age mechanical properties of concrete in real structure", Comput. Concrete, 12(1), 53-64. https://doi.org/10.12989/cac.2013.12.1.053
  29. Zhu, B.F. (2010), "On pipe cooling of concrete dams", J. Hydraul. Eng., 41(5), 505-513.
  30. Zhu, Z.Y., Chen, W.M., Qiang, S., Zhang, G.X. and Liu, Y. (2017), "An improvement on the concrete exothermic models considering self-temperature duration", Comput. Concrete, 19(6), 659-666. https://doi.org/10.12989/CAC.2017.19.6.659
  31. Zhu, Z.Y., Qiang, S. and Chen, W.M. (2013), "A new method solving the temperature field of concrete around cooling pipes", Comput. Concrete, 11(5), 441-462. https://doi.org/10.12989/cac.2013.11.5.441
  32. Zuo, Z., Hu, Y., Li Q.B. and Liu, G. (2015), "An extended finite element method for pipe embedded plane thermal analysis", Fin. Elem. Anal. Des., 102, 52-64. https://doi.org/10.1016/j.finel.2015.05.002
  33. Zhu, B.F. (1998), Thermal Stress and Temperature Control of Mass Concrete, China Electric Power Press, Beijing, China.

Cited by

  1. Simulation of the temperature field for massive concrete structures using an interval finite element method vol.37, pp.7, 2020, https://doi.org/10.1108/ec-10-2019-0456
  2. Thermal cracking assessment for nuclear containment buildings using high-strength concrete vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.429