References
- Abachizadeh, M. and Tahani, M. (2009), "An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost", Struct. Multidiscipl. Optim., 37(4), 367-376. https://doi.org/10.1007/s00158-008-0235-6
- Ameri, E., Aghdam, M.M. and Shakeri, M. (2012), "Global optimization of laminated cylindrical panels based on fundamental natural frequency", Compos. Struct., 94(9), 2697-2705. https://doi.org/10.1016/j.compstruct.2012.04.005
- Apalak, M.K., Karaboga, D. and Akay, B. (2014), "The artificial bee colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates", Eng. Optim., 46(3), 420-437. https://doi.org/10.1080/0305215X.2013.776551
- Bargh, H.G. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccan., 47(3), 719-730. https://doi.org/10.1007/s11012-011-9482-5
- Correia, V.M., Madeira, J.F., Araujo, A.L. and Soares, C.M. (2017), "Multiobjective design optimization of laminated composite plates with piezoelectric layers", Compos. Struct., 169, 10-20. https://doi.org/10.1016/j.compstruct.2016.09.052
- Duffy, K.J. and Adali, S. (1991), "Optimal fibre orientation of antisymmetric hybrid laminates for maximum fundamental frequency and frequency separation", J. Sound Vibr., 146(2), 181-190. https://doi.org/10.1016/0022-460X(91)90757-B
- Farshi, B. and Rabiei, R. (2007), "Optimum design of composite laminates for frequency constraints", Compos. Struct., 81(4), 587-597. https://doi.org/10.1016/j.compstruct.2006.10.009
- Gandomi, A.H. (2013), "Design optimization of truss structures using cuckoo search algorithm", Struct. Des. Tall Spec. Build., 22(17), 1330-1349. https://doi.org/10.1002/tal.1033
- Ghasemi, A.R. (2017), "Multi-objective optimization of laminated composite shells", Struct. Multidiscipl. Optim., 55(3), 1051-1062. https://doi.org/10.1007/s00158-016-1559-2
- Ghashochi-Bargh, H. and Sadr, M.H. (2013), "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels", Struct. Eng. Mech., 47(5), 713-727. https://doi.org/10.12989/sem.2013.47.5.713
- Grosset, L., LeRiche, R. and Haftka, R.T. (2006), "A double-distribution statistical algorithm for composite laminate optimization", Struct. Multidiscipl. Optim., 31(1), 49-59. https://doi.org/10.1007/s00158-005-0551-z
- Hemmatian, H., Fereidoon, A. and Shirdel, H. (2014), "Optimization of hybrid composite laminate based on the frequency using imperialist competitive algorithm", Mech. Adv. Compos. Struct., 1(1), 37-48.
- Jakob, W. and Blume, C. (2014), "Pareto optimization or cascaded weighted sum: A comparison of concepts", Algorith., 7(1), 166-185. https://doi.org/10.3390/a7010166
- Jones, R.M. (1975), Mechanics of Composite Materials (Vol. 193), Scripta Book Company, Washington, U.S.A.
- Kalita, K. (2018), "Design of Composite Laminates with Nature-Inspired Optimization", Ph.D. Dissertation, Indian Institute of Engineering Science & Technology, Shibpur, India.
- Kalita, K. and Haldar, S. (2017), "Eigenfrequencies of simply supported taper plates with cut-outs", Struct. Eng. Mech., 63(1), 103-113. https://doi.org/10.12989/SEM.2017.63.1.103
- Kalita, K., Dey, P. and Haldar, S. (2018), "Robust genetically-optimized skew laminates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
- Kalita, K., Nasre, P., Dey, P. and Haldar, S. (2018), "Metamodel based multi-objective design optimization of laminated composite plates", Struct. Eng. Mech., 67(3), 301-310. https://doi.org/10.12989/SEM.2018.67.3.301
- Kalita, K., Ramachandran, M., Raichurkar, P., Mokal, S.D. and Haldar, S. (2016), "Free vibration analysis of laminated composites by a nine node isoparametric plate bending element", Adv. Compos. Lett., 25(5), 108-116.
- Koide, R.M. and Luersen, M.A. (2013), "Maximization of fundamental frequency of laminated composite cylindrical shells by ant colony algorithm", J. Aerosp. Technol. Manage., 5(1), 75-82.
- Koide, R.M., França, G.V. and Luersen, M.A. (2013), "An ant colony algorithm applied to lay-up optimization of laminated composite plates", Lat. Am. J. Sol. Struct., 10(3), 491-504. https://doi.org/10.1590/S1679-78252013000300003
- Le Riche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31(5), 951-956. https://doi.org/10.2514/3.11710
- Le Riche, R. and Haftka, R.T. (1995), "Improved genetic algorithm for minimum thickness composite laminate design", Compos. Eng., 5(2), 143-161. https://doi.org/10.1016/0961-9526(95)90710-S
- Lee, S.Y. and Park, T. (2009), "Free vibration of laminated composite skew plates with central cutouts", Struct. Eng. Mech., 31(5), 587-603. https://doi.org/10.12989/sem.2009.31.5.587
- Mishra, S.K. (2013), "Global optimization of some difficult benchmark functions by host-parasite co-evolutionary algorithm", Econ. Bullet., 33(1), 1-18. https://doi.org/10.1007/BF02233729
- Narita, Y. (2003), "Layerwise optimization for the maximum fundamental frequency of laminated composite plates", J. Sound Vibr., 263(5), 1005-1016. https://doi.org/10.1016/S0022-460X(03)00270-0
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press.
- Santos, C.E., Freire, P.K., Mishra, S.K. and Soares Junior, A. (2011), "Application of a particle swarm optimization to the tank model", IAHS Publ., 347, 114-120.
- Santos, C., Pinto, L., De Macedo Machado Freire, P. and Mishra, S. (2010), "Application of a particle swarm optimization to a physically-based erosion model", Annals of Warsaw University of Life Sciences-SGGW, Land Reclamation, 42(1), 39-49. https://doi.org/10.2478/v10060-008-0063-9
- Sudhagar, P.E. (2017), "Structural optimization of rotating tapered laminated thick composite plates", Int. J. Mech. Mater. Des., 13(1), 85-124. https://doi.org/10.1007/s10999-015-9319-9
- Tabakov, P.Y. and Moyo, S. (2017), "A comparative analysis of evolutionary algorithms in the design of laminated composite structures", Sci. Eng. Compos. Mater., 24(1), 13-21. https://doi.org/10.1515/secm-2014-0385
- Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52(4), 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
- Topal, U. (2009), "Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load", Mater. Des., 30(7), 2584-2594. https://doi.org/10.1016/j.matdes.2008.09.020
- Urfalioglu, O. (2004), "Robust estimation of camera rotation, translation and focal length at high outlier rates", Proceedings of the 1st Canadian Conference on Computer and Robot Vision.
- Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H.C. and Nguyen-Thoi, T. (2017), "Multi-objective optimization of laminated composite beam structures", Compos. Struct., 168, 498-509. https://doi.org/10.1016/j.compstruct.2017.02.038
- Vosoughi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Struct. Eng. Mech., 28(4), 509-516.
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
- Zhang, Y.W. (2015), "A comprehensive survey on particle swarm optimization algorithm and its applications", Math. Prob. Eng., 1-38.
Cited by
- Mechanical, Thermal and Morphological Characterization of Basalt Fibre Composite- A Review vol.810, 2020, https://doi.org/10.1088/1757-899x/810/1/012043
- Effect of Copper Nano Powder on Kevlar Fiber Reinforced Epoxy Resin Composites vol.810, 2019, https://doi.org/10.1088/1757-899x/810/1/012053
- Review on Mechanical, Thermal and Morphological Characterization of Sisal Fibre Composite vol.810, 2019, https://doi.org/10.1088/1757-899x/810/1/012074
- Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI vol.93, pp.6, 2019, https://doi.org/10.1108/aeat-02-2021-0055