References
- Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Dai, Z., Ren, H., Zhuang, X. and Rabczuk, T. (2016), "Dual-support smoothed particle hydrodynamics for elastic mechanics", Int. J. Comput. Meth., 14(4), 1750039. https://doi.org/10.1142/S0219876217500396
- Dinh, Q.D., Heinz, K. and Martin, H. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010
- Ghazvinian, A., Vaneghi, R.G., Hadei, M.R. and Azinfar, M.J. (2013), "Shear behavior of inherently anisotropic rocks", Int. J. Rock Mech. Min. Sci., 61, 96-110. https://doi.org/10.1016/j.ijrmms.2013.01.009
- Haeri, H. (2015), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
- Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106. https://doi.org/10.1134/S1062739115040296
- Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
- Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
- Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
- Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
- Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
- Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 29(5), 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7
- Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
- Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
- Hazzard, J.F. and Young, R.P. (2000), "Simulation acoustic emissions in bonded-particle models of rock", Int. J. Rock Mech. Min. Sci., 37, 867-872. https://doi.org/10.1016/S1365-1609(00)00017-4
- Itasca Consulting Group, Inc. (2004), Particle Flow Code in 2-Dimensions: Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group, Inc., Minneapolis.
- Jiang, Q., Feng, X.T., Hatzor, Y.H., Hao, X.J. and Li, S.J. (2014), "Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station", Chin. Eng. Geol., 175, 35 45. https://doi.org/10.1016/j.enggeo.2014.03.019
- Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol. 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014
- Kulatilake, P.H.S.W., Malama, B. and Wang, J.L. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci. 38(5), 641-657. https://doi.org/10.1016/S1365-1609(01)00025-9
- Labiouse, V. and Vietor, T. (2014), "Laboratory and in situ simulation tests of the excavation damaged zone around galleries in Opalinus clay", Rock Mech. Rock Eng., 47(1), 57-70. https://doi.org/10.1007/s00603-013-0389-4
- Lambert, C., Buzzi, O. and Giacomini, A. (2010), "Influence of calcium leaching on the mechanical behavior of a concrete-mortar interface: A DEM analysis", Comput. Geotech., 37(3), 258-266. https://doi.org/10.1016/j.compgeo.2009.09.006
- Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
- Lei, M.F., Peng, L.M., Shi, C.H. and Wang, S.Y. (2013), "Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack", Tunn. Undergr. Space Technol., 36, 5-13. https://doi.org/10.1016/j.tust.2013.01.007
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
- Liang, Z.Z., Tang, C.A., Li, H.X., Xu, T. and Yang, T.H. (2005), "A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression", Rock Soil Mech., 26(1), 57-62. https://doi.org/10.3969/j.issn.1000-7598.2005.01.012
- Lisjak, A., Grasselli, G. and Vietor, T. (2014a), "Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales", Int. J. Rock Mech. Min. Sci., 65, 96-115. https://doi.org/10.1016/j.ijrmms.2013.10.006
- Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
- Min, K.B. and Jing, L. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J. Rock Mech. Min. Sci., 40(6), 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
- Moradian, Z.A., Ballivy, G., Rivard, P., Grave, L.C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004
- Park, B. and Min, K.B. (2015), "Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 76, 243-255. https://doi.org/10.1016/j.ijrmms.2015.03.014
- Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151
- Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020
- Rabczuk, T., Zi, G., Bordas, S. and Hung, N.X. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031
- Ren, H., Zhuang, X., Cai, Y. and Rabczuk, T. (2016), "Dual-horizon peridynamics", Int. J. Numer. Meth. Eng., 108(12), 1451-1476. https://doi.org/10.1002/nme.5257
- Saeidi, O., Stille, H. and Torabi, R.S. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Space Technol., 38, 11-25. https://doi.org/10.1016/j.tust.2013.05.005
- Sagong, M., Park, D., Yoo, J. and Lee, J.S. (2011), "Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression", Int. J. Rock Mech. Min. Sci., 48(7), 1055-1067. https://doi.org/10.1016/j.ijrmms.2011.09.001
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
- Sarfarazi, V., Faridi, H. R., Haeri, H. and Schubert, W. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284 https://doi.org/10.12989/ACC.2015.3.4.269
- Seeska, R., Lux, K.H. and Hesser, J.B.B. (2011), Experiment: Long Term Deformation Behavior of Boreholes, Mont Terri Technical Note TN 2011-04. Switzerland, Saint Ursanne.
- Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
- Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels- experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
- Sun, J.P., Zhao, Z.Y. and Zhang, Y. (2011), "Determination of three dimensional hydraulic conductivities using a combined analytical/neural network model", Tunn. Undergr. Space Technol., 26(2), 310-319. https://doi.org/10.1016/j.tust.2010.11.002
- Tang, C.A. (1997), "Numerical simulation on progressive failure leading to collapse and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-262. https://doi.org/10.1016/S0148-9062(96)00039-3
- Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression part I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569. https://doi.org/10.1016/S1365-1609(99)00121-5
- Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
- Vietor, T., Li, X.L., Chen, G.J., Verstricht, J., Fisch, H. and Fierz, T. (2010), Small Scale in Situ Tests: Bore-Hole Experiments at HADES and Mont Terri Concrete Laboratories, Deliverable 8, TIMODAZ Project.
- Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019
- Wang, Y.T., Zhou, X.P. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013
- Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
- Wasantha, P.L.P., Ranjith, P.G., Xu, T., Zhao, J. and Yan, Y.L. (2014), "A new parameter to describe the persistency of non-persistent joints", Eng. Geol., 181, 71-77. https://doi.org/10.1016/j.enggeo.2014.08.003
- Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
- Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
- Yu, C., Deng, S.C., Li, H.B., Li, J.C. and Xia, X. (2013), "The anisotropic seepage analysis of water sealed underground oil storage caverns", Tunn. Undergr. Space Technol., 38, 26-37. https://doi.org/10.1016/j.tust.2013.05.003
- Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D Xray computed tomography", Eng. Geol., 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017
- Zhang, Q., Zhu, H.H., Zhang, L.Y. and Ding, X.B. (2011b), "Study of scale effect on intact rock strength using particle flow modeling", Int. J. Rock Mech. Min. Sci., 48(8), 1320-1328. https://doi.org/10.1016/j.ijrmms.2011.09.016
- Zhang, Z.X., Hu, X.Y. and Scott, K.D. (2011a), "A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils", Comput. Geotech., 38(1), 94-104. https://doi.org/10.1016/j.compgeo.2010.10.011
- Zhou, X.P, Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theoret. Appl. Fract. Mech., 57(1), 19-30. https://doi.org/10.1016/j.tafmec.2011.12.004
- Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theoret. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005
- Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock Mech. Min. Sci., 72, 54-60. https://doi.org/10.1016/j.ijrmms.2014.08.013
- Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378
- Zhou, X.P. (2010), "Dynamic damage constitutive relation of mesoscopic heterogenous brittle rock under rotation of principal stress axes", Theoret. Appl. Fract. Mech., 54(2), 110-116. https://doi.org/10.1016/j.tafmec.2010.10.006
Cited by
- Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction vol.74, pp.2, 2019, https://doi.org/10.12989/sem.2020.74.2.283