DOI QR코드

DOI QR Code

Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials

  • Haeri, Hadi (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Moosavi, Ehsan (Department of Mining Engineering, Islamic Azad University)
  • Received : 2018.04.07
  • Accepted : 2018.11.13
  • Published : 2019.01.10

Abstract

The biaxial failure mechanism of transversally bedding concrete layers was numerically simulated using a sophisticated two-dimensional discrete element method (DEM) implemented in the particle flow code (PFC2D). This numerical modelling code was first calibrated by uniaxial compression and Brazilian testing results to ensure the conformity of the simulated numerical model's response. Secondly, 21 rectangular models with dimension of $54mm{\times}108mm$ were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness were chosen in models, i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that in all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be noted that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

Keywords

References

  1. Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  2. Dai, Z., Ren, H., Zhuang, X. and Rabczuk, T. (2016), "Dual-support smoothed particle hydrodynamics for elastic mechanics", Int. J. Comput. Meth., 14(4), 1750039. https://doi.org/10.1142/S0219876217500396
  3. Dinh, Q.D., Heinz, K. and Martin, H. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010
  4. Ghazvinian, A., Vaneghi, R.G., Hadei, M.R. and Azinfar, M.J. (2013), "Shear behavior of inherently anisotropic rocks", Int. J. Rock Mech. Min. Sci., 61, 96-110. https://doi.org/10.1016/j.ijrmms.2013.01.009
  5. Haeri, H. (2015), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  6. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106. https://doi.org/10.1134/S1062739115040296
  7. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  8. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  9. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  10. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  11. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  12. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  13. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 29(5), 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7
  14. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  15. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  16. Hazzard, J.F. and Young, R.P. (2000), "Simulation acoustic emissions in bonded-particle models of rock", Int. J. Rock Mech. Min. Sci., 37, 867-872. https://doi.org/10.1016/S1365-1609(00)00017-4
  17. Itasca Consulting Group, Inc. (2004), Particle Flow Code in 2-Dimensions: Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group, Inc., Minneapolis.
  18. Jiang, Q., Feng, X.T., Hatzor, Y.H., Hao, X.J. and Li, S.J. (2014), "Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station", Chin. Eng. Geol., 175, 35 45. https://doi.org/10.1016/j.enggeo.2014.03.019
  19. Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol. 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014
  20. Kulatilake, P.H.S.W., Malama, B. and Wang, J.L. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci. 38(5), 641-657. https://doi.org/10.1016/S1365-1609(01)00025-9
  21. Labiouse, V. and Vietor, T. (2014), "Laboratory and in situ simulation tests of the excavation damaged zone around galleries in Opalinus clay", Rock Mech. Rock Eng., 47(1), 57-70. https://doi.org/10.1007/s00603-013-0389-4
  22. Lambert, C., Buzzi, O. and Giacomini, A. (2010), "Influence of calcium leaching on the mechanical behavior of a concrete-mortar interface: A DEM analysis", Comput. Geotech., 37(3), 258-266. https://doi.org/10.1016/j.compgeo.2009.09.006
  23. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  24. Lei, M.F., Peng, L.M., Shi, C.H. and Wang, S.Y. (2013), "Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack", Tunn. Undergr. Space Technol., 36, 5-13. https://doi.org/10.1016/j.tust.2013.01.007
  25. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  26. Liang, Z.Z., Tang, C.A., Li, H.X., Xu, T. and Yang, T.H. (2005), "A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression", Rock Soil Mech., 26(1), 57-62. https://doi.org/10.3969/j.issn.1000-7598.2005.01.012
  27. Lisjak, A., Grasselli, G. and Vietor, T. (2014a), "Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales", Int. J. Rock Mech. Min. Sci., 65, 96-115. https://doi.org/10.1016/j.ijrmms.2013.10.006
  28. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  29. Min, K.B. and Jing, L. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J. Rock Mech. Min. Sci., 40(6), 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
  30. Moradian, Z.A., Ballivy, G., Rivard, P., Grave, L.C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004
  31. Park, B. and Min, K.B. (2015), "Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 76, 243-255. https://doi.org/10.1016/j.ijrmms.2015.03.014
  32. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346
  33. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  34. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151
  35. Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020
  36. Rabczuk, T., Zi, G., Bordas, S. and Hung, N.X. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031
  37. Ren, H., Zhuang, X., Cai, Y. and Rabczuk, T. (2016), "Dual-horizon peridynamics", Int. J. Numer. Meth. Eng., 108(12), 1451-1476. https://doi.org/10.1002/nme.5257
  38. Saeidi, O., Stille, H. and Torabi, R.S. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Space Technol., 38, 11-25. https://doi.org/10.1016/j.tust.2013.05.005
  39. Sagong, M., Park, D., Yoo, J. and Lee, J.S. (2011), "Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression", Int. J. Rock Mech. Min. Sci., 48(7), 1055-1067. https://doi.org/10.1016/j.ijrmms.2011.09.001
  40. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  41. Sarfarazi, V., Faridi, H. R., Haeri, H. and Schubert, W. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284 https://doi.org/10.12989/ACC.2015.3.4.269
  42. Seeska, R., Lux, K.H. and Hesser, J.B.B. (2011), Experiment: Long Term Deformation Behavior of Boreholes, Mont Terri Technical Note TN 2011-04. Switzerland, Saint Ursanne.
  43. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
  44. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels- experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  45. Sun, J.P., Zhao, Z.Y. and Zhang, Y. (2011), "Determination of three dimensional hydraulic conductivities using a combined analytical/neural network model", Tunn. Undergr. Space Technol., 26(2), 310-319. https://doi.org/10.1016/j.tust.2010.11.002
  46. Tang, C.A. (1997), "Numerical simulation on progressive failure leading to collapse and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-262. https://doi.org/10.1016/S0148-9062(96)00039-3
  47. Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression part I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569. https://doi.org/10.1016/S1365-1609(99)00121-5
  48. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  49. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  50. Vietor, T., Li, X.L., Chen, G.J., Verstricht, J., Fisch, H. and Fierz, T. (2010), Small Scale in Situ Tests: Bore-Hole Experiments at HADES and Mont Terri Concrete Laboratories, Deliverable 8, TIMODAZ Project.
  51. Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019
  52. Wang, Y.T., Zhou, X.P. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013
  53. Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
  54. Wasantha, P.L.P., Ranjith, P.G., Xu, T., Zhao, J. and Yan, Y.L. (2014), "A new parameter to describe the persistency of non-persistent joints", Eng. Geol., 181, 71-77. https://doi.org/10.1016/j.enggeo.2014.08.003
  55. Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
  56. Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
  57. Yu, C., Deng, S.C., Li, H.B., Li, J.C. and Xia, X. (2013), "The anisotropic seepage analysis of water sealed underground oil storage caverns", Tunn. Undergr. Space Technol., 38, 26-37. https://doi.org/10.1016/j.tust.2013.05.003
  58. Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D Xray computed tomography", Eng. Geol., 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017
  59. Zhang, Q., Zhu, H.H., Zhang, L.Y. and Ding, X.B. (2011b), "Study of scale effect on intact rock strength using particle flow modeling", Int. J. Rock Mech. Min. Sci., 48(8), 1320-1328. https://doi.org/10.1016/j.ijrmms.2011.09.016
  60. Zhang, Z.X., Hu, X.Y. and Scott, K.D. (2011a), "A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils", Comput. Geotech., 38(1), 94-104. https://doi.org/10.1016/j.compgeo.2010.10.011
  61. Zhou, X.P, Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theoret. Appl. Fract. Mech., 57(1), 19-30. https://doi.org/10.1016/j.tafmec.2011.12.004
  62. Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theoret. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005
  63. Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock Mech. Min. Sci., 72, 54-60. https://doi.org/10.1016/j.ijrmms.2014.08.013
  64. Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378
  65. Zhou, X.P. (2010), "Dynamic damage constitutive relation of mesoscopic heterogenous brittle rock under rotation of principal stress axes", Theoret. Appl. Fract. Mech., 54(2), 110-116. https://doi.org/10.1016/j.tafmec.2010.10.006

Cited by

  1. Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction vol.74, pp.2, 2019, https://doi.org/10.12989/sem.2020.74.2.283