DOI QR코드

DOI QR Code

Development of Intelligent IoT Exhaustion System for Bag Filter Collector

백필터 집진기의 지능형 IoT 탈진 시스템 개발

  • 장성철 (한국폴리텍IV대학 충주캠퍼스 기계시스템과) ;
  • 이정원 (에스엠티(주) 기술연구소)
  • Received : 2019.03.17
  • Accepted : 2019.06.03
  • Published : 2019.06.30

Abstract

A bag filter collector is a kind of air purifier that organizes several or dozens of filters to purify fine dust and release clean air into the atmosphere. If the bag filter length is less than 5m, the dust and fume attached to the bag filter could be effectively removed by passing the compressed air generated by the diaphragm valve through the venturi. Injectors that are more efficient and economical are urgently needed to achieve satisfactory results for long-bag exhaustion of more than 7 meters. In the case of existing domestic and foreign injectors, a number of blow tubes were dismantled during maintenance, and the injector and blow tube were combined to pose a number of problems, including inconvenience of work due to weight increase. In this study, injector flow for the development of the best use of interpretation of the coanda effect and the fourth round of industrial technology Intelligent automation of exhaustion, have been engineered energy than standard equipment. lowering costs and filter life to radically improve the commercial studies.

백필터 집진기는 여러개 또는 수십개의 여과포를 구성하여 미세먼지를 정화시켜 깨끗한 공기를 대기에 방출시키는 일종의 공기청정기이다. 백필터 길이가 5m 이하인 경우 다이아프램 밸브에서 발생되는 압축공기를 벤추리를 통과시키는 것만으로도 백필터에 부착된 분진 및 흄을 효율적으로 탈진 할 수 있었다. 7m 이상의 롱백 탈진에 만족스러운 결과를 얻기 위해서는 더욱 효율이 높고 경제성 있는 인젝터 개발이 시급한 실정이다. 기존 국내외 인젝터의 경우 유지 보수시 다수의 블루튜브 해체작업과 인젝터와 블루튜브가 결합되어 중량증가로 인한 작업의 불편성 등 많은 문제를 내포하고 있는 실정이다. 본 연구에서는 코안다 효과를 이용한 최적의 인젝터 개발을 위한 유동해석과 4차 산업의 지능형 자동화 탈진 기술이 접목되어, 기존 설비 대비 에너지 비용저감 및 필터 수명향상 등을 획기적으로 개선시키고자 하는 상용화 연구를 수행하였다.

Keywords

References

  1. G Klein, T Schrooten, L Schenk, R Esser and A Koogel, "Face the operating costs," Intensiv-Filter GmbH, Germany. 2009.
  2. Jang, S. C., Han, S. M., Lee, C. K., & Jung H. C., "FSI Analysis of Pneumatic Actuator", KSPSE Spring Conference, pp.81-83, 2016.
  3. Menter, F. and Esch, T., "Elements of Industrial Heat Transfer Predictions," 16th Bazilian Congress of Mechanical Engineering (COBEM), Uberlandia, Brazil. 2001.
  4. D. C. Wilcox, "Turbulence modeling for CFD, DCW industries", Inc. La Canada, CA, 1993.
  5. Launder, B. E. and Spalding, D. B., The numerical computational of turbulence flows", Computational methods in applied mechanics and engineering, Vol.3, pp.269-289, 1972. https://doi.org/10.1016/0045-7825(74)90029-2
  6. K. Keller, "Low cost, high performance, high volume heatsinks", in Proc.Electronics Manufacturing Technology Symposium, pp. 113-118, 1998.
  7. S. Narasimhan and J. Majdalani, "Characterization of compact heat sink models in natural convection", IEEE Trans. Components and Packaging Technologies, Vol. 25, Issue 1, pp.78-86, March 2002. https://doi.org/10.1109/6144.991179
  8. S. P. Watson and B. G. Sammakia, "The thermal performance of a chip scale package array with simple block and plate heat sinks", in Proc. Thermal and Thermomechanical Phenomena in Electronic Systems Conf, pp 276284, 2002.
  9. Jang, S. C., Han, S. M., Lee, C. K., & Jung H. C., "FSI Analysis of Pneumatic Actuator", KSPSE Spring Conference, pp.81-83, 2016.
  10. Jang, S. C., Cho, H. D., and Kim, N. K., "Development of Gear Type Vane Damper Change Link Type in FD Fan, "KSMTE, Vol. 13, No. 1, pp.104-109. 2000.
  11. Jang, S. C., Han, S. H., and Kim, J. W., , "A Study on Performance Improvement of Gear Type Vane Damper in FD Fan(Productivity Increases & Construction Improvement)" KSMTE J. Vol. 19, No.1, pp. 134-139. 2010.
  12. Yi, C. S., Hong, J. K., Suh, J. S., Shin, Y. I. and Park, Y. S., 2009, "Effect of Cutoff Angle on the Flow Characteristic of Turbo-Fan", Conference Proceedings of KSME Spring Annual Meeting(KSME 09TE068), pp. 311-318. 2015.
  13. P. J. Witt, C. G. Solnordal, L. J. Mittoni, S. Finn, J. Pluta, "Optimising the Design of Fume Extraction Hoods Using a Combination of Engineering and CFD Modelling", Applied Mathematical Modelling, Vol. 30, No.11, pp.1167-1179. 2006, https://doi.org/10.1016/j.apm.2006.02.003
  14. Dudley, D.W., 1984, Hanbook of Practical Gear Design, McGraw-Hill. ANSI/AGMA 2003-A86, Rating the Pitting and Bendinf Strength of Generated Straight Bevel, ZEROL Bevel, and Spiral Bevel Gear Teeth. 2008,
  15. Choong Hyun Kim, Hyo Sok Ahn and Tae Hyong Chong, 2003, "On a Method for the Durability Enhancement of Plastic Spur Gear Using Finite Element Analysis", Transactions of the KSME A, Vol. 27, No. 2, pp.223-230. 2006. https://doi.org/10.3795/KSME-A.2003.27.2.223