DOI QR코드

DOI QR Code

빅데이터 기반으로 직접 만드는 도시락 앱 설계

Design of Self Lunchbox App based on Big Data

  • 조광문 (목포대학교 전자상거래학과)
  • Cho, Kwangmoon (Dept. of Electronic Commerce, Mokpo National University)
  • 투고 : 2019.07.20
  • 심사 : 2019.09.30
  • 발행 : 2019.12.31

초록

본 논문에서는 소비자들이 직접 도시락 반찬을 선택해서 도시락을 주문할 수 있는 일인분 도시락 앱을 설계하였다. 현대 사회에선 대가구에서 핵가족, 핵가족에서 1인 가구가 점점 많아지고 있다. 혼자 밥하기 번거롭고 식당이나 배달 가능한 업소에서는 보통 2인분부터 주문할 수 있으므로 혼자 이용하기엔 부담스럽다. 그런 불편함을 해소하기 위해 다양한 세부 메뉴들을 골라 1인 맞춤 도시락을 주문할 수 있는 앱이다. 세부 메뉴를 선택하는 과정에서 빅데이터가 제공하는 정보를 이용한다. 즐겨찾기 기능을 통하여 기존의 주문을 사용할 수 있으며, 빅데이터를 이용한 추천 도시락 메뉴를 이용할 수도 있다.

The 1-serving lunchbox app is designed and developed for enabling consumers to order their lunch box by choosing their own lunch side dishes. In modern society, one-person households are growing in larger areas. It is too burdensome to handle alone because it is cumbersome to cook alone and you should order from two people in a restaurant shop. To resolve such inconveniences, it is an app to choose various detailed menus and order personalized lunches. In the process of selecting a detailed menu, information provided by big data is used. You can use the existing order through the bookmark function, or you can use the recommended lunch menu using big data.

키워드

참고문헌

  1. http://econonews.co.kr/news/articleView.html?idxno=10793
  2. Korean Statistical Information Service, http://www.kosis.kr
  3. http://www.meconomynews.com/news/articleView.html?idxno=7552
  4. http://www.mhj21.com/120627
  5. Google Store - Hansot Lunchbox
  6. Google Store - Yogiyo
  7. Google Store - Baemin
  8. Younghyun Jang, Top Android App Developer:
  9. m-BizStore, Wonderful Soft.
  10. K.M.Cho, "Development of Notify App for Cosmetics Expiration Date," Journal of Digital Convergence, Vol.13, No.3, pp.179-184, 2015. https://doi.org/10.14400/JDC.2015.13.3.179
  11. K.M.Cho, "Development of Gift Recommendation App according to the Individual Preference fused with e-Commerce," Journal of Digital Convergence, Vol.13, No.8, pp.261-265, 2015. https://doi.org/10.14400/JDC.2015.13.8.261
  12. J.K.Cho, "A Study of User Text Sentiment Dictionary for Food Recommendation Service on Big Data Environment," Journal of Knowledge Information Technology and Systems, Vol.14, No.4, pp.327-334, 2019. https://doi.org/10.34163/jkits.2019.14.4.002
  13. J.C.Lee and, M.H.Lee, "Big data-based information recommendation system," Journal of the Korea Institute of Information and Communication Engineering, Vol..22, No.3, pp.443-450, 2018. https://doi.org/10.6109/jkiice.2018.22.3.443
  14. J.H.Kim and Y.G.Jung, "Recommendation System in the Environment of Big Data," Proceedings of Summer Conference of ICT Platform Society, Vol.1, No.1, pp.58-60. 2013.
  15. Y.D.Seo and J.H.Ahn, "Enhanced User Taste Prediction Method for Efficient Content Recommendation Using Bigdata," Proceedings of Conference of the Korea Institute of Information Technology, pp.139-141, 2014.