DOI QR코드

DOI QR Code

Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway

  • Zhao, Dong (Natural Products Research Center, Korea Institute of Science and Technology) ;
  • Gu, Ming-Yao (Natural Products Research Center, Korea Institute of Science and Technology) ;
  • Xu, Jiu Liang (Natural Products Research Center, Korea Institute of Science and Technology) ;
  • Zhang, Li Jun (Natural Products Research Center, Korea Institute of Science and Technology) ;
  • Ryu, Shi Yong (Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology) ;
  • Yang, Hyun Ok (Natural Products Research Center, Korea Institute of Science and Technology)
  • Received : 2018.06.04
  • Accepted : 2018.08.31
  • Published : 2019.01.01

Abstract

Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, prostaglandin (PG) $E_2$, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated $Akt/IKK/NF-{\kappa}B$ pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and $TNF-{\alpha}$ by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting $Akt/IKK/I{\kappa}B/NF-{\kappa}B$ pathway and promoting Nrf-2/HO-1 pathway.

Keywords

References

  1. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
  2. Baeuerle, P. A. and Henkel, T. (1994) Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12, 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  3. Bai, D., Ueno, L. and Vogt, P. K. (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int. J. Cancer 125, 2863-2870. https://doi.org/10.1002/ijc.24748
  4. Choi, D. K., Koppula, S. and Suk, K. (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16, 1021-1043. https://doi.org/10.3390/molecules16021021
  5. Cianciulli, A., Calvello, R., Porro, C., Trotta, T., Salvatore, R. and Panaro, M. A. (2016) PI3K/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-acivated microglia. Int. Immunopharmacol. 36, 282-290 https://doi.org/10.1016/j.intimp.2016.05.007
  6. Cuadrado, A., Martin-Moldes, Z., Ye, J. and Lastres-Becker, I. (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J. Biol. Chem. 289, 15244-15258. https://doi.org/10.1074/jbc.M113.540633
  7. Dendorfer, U., Oettgen, P. and Libermann, T. A. (1994) Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol. Cell. Biol. 14, 4443-4454. https://doi.org/10.1128/MCB.14.7.4443
  8. Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S. and Korlakunta, J. N. (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 127, 515-520. https://doi.org/10.1016/j.jep.2009.10.004
  9. El-Ashmawy, N. E., Khedr, N. F., El-Bahrawy, H. A. and Abo Mansour, H. E. (2017) Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms. Eur. J. Nutr. 57, 981-989.
  10. Giulian, D. and Baker, T. J. (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163-2178 https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986
  11. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. and Gage, F. H. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
  12. Grzanna, R., Lindmark, L. and Frondoza, C. G. (2005) Ginger--an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 8, 125-132. https://doi.org/10.1089/jmf.2005.8.125
  13. Gupta, S. C., Sundaram, C., Reuter, S. and Aggarwal, B. B. (2010) Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta 1799, 775-787. https://doi.org/10.1016/j.bbagrm.2010.05.004
  14. Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63, 211-223. https://doi.org/10.1016/j.neuropharm.2012.03.016
  15. Han, Y. A., Song, C. W., Koh, W. S., Yon, G. H., Kim, Y. S., Ryu, S. Y., Kwon, H. J. and Lee, K. H. (2013) Anti-inflammatory effects of the Zingiber officinale roscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated Raw 264.7 cells. Phytother. Res. 27, 1200-1205. https://doi.org/10.1002/ptr.4847
  16. Infante-Duarte, C., Waiczies, S., Wuerfel, J. and Zipp, F. (2008) New developments in understanding and treating neuroinflammation. J. Mol. Med. 86, 975-985. https://doi.org/10.1007/s00109-007-0292-0
  17. Jeong, Y. H., Park, J. S., Kim, D. H. and Kim, H. S. (2016) Lonchocarpine increases Nrf2/ARE-mediated antioxidant enzyme expression by modulating AMPK and MAPK signaling in brain astrocytes. Biomol. Ther. (Seoul) 24, 581-588. https://doi.org/10.4062/biomolther.2016.141
  18. Jung, J. S., Choi, M. J., Lee, Y. Y., Moon, B. I., Park, J. S., Kim, H. S. (2017) Suppression of Lipopolysaccharide-induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation. J. Agric. Food Chem. 65, 373-382. https://doi.org/10.1021/acs.jafc.6b05147
  19. Karin, M. and Delhase, M. (2000) The $I{\kappa}B$ kinase (IKK) and NF-${\kappa}B$: key elements of proinflammatory signalling. Semin. Immunol. 12, 85-98. https://doi.org/10.1006/smim.2000.0210
  20. Koh, E. M., Kim, H. J., Kim, S., Choi, W. H., Choi, Y. H., Ryu, S. Y., Kim, Y. S., Koh, W. S. and Park, S. Y. (2009) Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med. 75, 148-151. https://doi.org/10.1055/s-0028-1088347
  21. Kwon, D. H., Cha, H. J., Choi, E. O., Leem, S. H., Kim, G. Y., Moon, S. K., Chang, Y. C., Yun, S. J., Hwang, H. J., Kim, B. W., Kim, W. J., Choi, Y. H. (2018) Schisandrin A suppresses lipopolysaccharide-indcued inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-B, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int. J. Mol. Med. 41, 264-274. https://doi.org/10.3892/ijmm.2017.3209
  22. Lee, H. Y., Park, S. H., Lee, M., Kim, H. J., Ryu, S. Y., Kim, N. D., Hwang, B. Y., Hong, J. T., Han, S. B. and Kim, Y. (2012) 1-Dehydro-[10]-gingerdione from ginger inhibits IKKbeta activity for NF-kappaB activation and suppresses NF-kappaB-regulated expression of inflammatory genes. Br. J. Pharmacol. 167, 128-140. https://doi.org/10.1111/j.1476-5381.2012.01980.x
  23. Li, F., Nitteranon, V., Tang, X., Liang, J., Zhang, G., Parkin, K. L. and Hu, Q. (2012) In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 135, 332-337. https://doi.org/10.1016/j.foodchem.2012.04.145
  24. Mattson, M. P. and Meffert, M. K. (2006) Roles for NF-${\kappa}B$ in nerve cell survival, plasticity, and disease. Cell Death Differ. 13, 852-860. https://doi.org/10.1038/sj.cdd.4401837
  25. Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A. and Rao, A. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860-866. https://doi.org/10.1126/science.278.5339.860
  26. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M. and Donner, D. B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82-85. https://doi.org/10.1038/43466
  27. Pan, M. H., Hsieh, M. C., Hsu, P. C., Ho, S. Y., Lai, C. S., Wu, H., Sang, S. and Ho, C. T. (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52, 1467-1477. https://doi.org/10.1002/mnfr.200700515
  28. Park, M., Bae, J. and Lee, D. S. (2008) Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother. Res. 22, 1446-1449. https://doi.org/10.1002/ptr.2473
  29. Piirainen, S., Youssef, A., Song, C., Kalueff, A. V., Landreth, G. E., Malm, T. and Tian, L. (2017) Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci. Biobehav. Rev. 77, 148-164. https://doi.org/10.1016/j.neubiorev.2017.01.046
  30. Rahmani, A. H., Shabrmi, F. M. and Aly, S. M. (2014) Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 125-136.
  31. Sizemore, N., Leung, S. and Stark, G. R. (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol. Cell. Biol. 19, 4798-4805. https://doi.org/10.1128/MCB.19.7.4798
  32. Syapin, P. J. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol. 155, 623-640. https://doi.org/10.1038/bjp.2008.342
  33. Tak, P. P. and Firestein, G. S. (2001) NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. https://doi.org/10.1172/JCI11830
  34. Tan, B. S., Kang, O., Mai, C. W., Tiong, K. H., Khoo, A. S., Pichika, M. R., Bradshaw, T. D. and Leong, C. O. (2013) 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPARgamma). Cancer Lett. 336, 127-139. https://doi.org/10.1016/j.canlet.2013.04.014
  35. Teismann, P., Tieu, K., Cohen, O., Choi, D. K., Wu, D. C., Marks, D., Vila, M., Jackson-Lewis, V. and Przedborski, S. (2003) Pathogenic role of glial cells in Parkinson's disease. Mov. Disord. 18, 121-129. https://doi.org/10.1002/mds.10332
  36. Villarino, A. V., Kanno, Y. and O'Shea, J. J. (2017) Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 18, 374-384. https://doi.org/10.1038/ni.3691
  37. Wang, L., Chen, Y., Sternberg, P., Cai, J. (2008) Essential roles of the PI3K/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest. Ophthalmol. Vis. Sci. 49, 1671-1678. https://doi.org/10.1167/iovs.07-1099
  38. Young, H. Y., Luo, Y. L., Cheng, H. Y., Hsieh, W. C., Liao, J. C. and Peng, W. H. (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J. Ethnopharmacol. 96, 207-210. https://doi.org/10.1016/j.jep.2004.09.009
  39. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. and Karin, M. (1997) The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91, 243-252. https://doi.org/10.1016/S0092-8674(00)80406-7
  40. Zhao, D., Kwon, S. H., Chun, Y. S., Gu, M. Y. and Yang, H. O. (2017) Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-kappaB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells. Neurochem. Res. 42, 667-677. https://doi.org/10.1007/s11064-016-2123-6

Cited by

  1. Formononetin Ameliorates Cognitive Disorder via PGC-1α Pathway in Neuroinflammation Conditions in High-Fat Diet-Induced Mice vol.18, pp.7, 2019, https://doi.org/10.2174/1871527318666190807160137
  2. 7-Deoxy-trans-dihydronarciclasine Isolated from Lycoris chejuensis Inhibits Neuroinflammation in Experimental Models vol.67, pp.35, 2019, https://doi.org/10.1021/acs.jafc.9b03307
  3. 6-Shogaol Inhibits Advanced Glycation End-Products-Induced IL-6 and ICAM-1 Expression by Regulating Oxidative Responses in Human Gingival Fibroblasts vol.24, pp.20, 2019, https://doi.org/10.3390/molecules24203705
  4. Erythronium japonicum Alleviates Inflammatory Pain by Inhibiting MAPK Activation and by Suppressing NF-κB Activation via ERK/Nrf2/HO-1 Signaling Pathway vol.9, pp.7, 2019, https://doi.org/10.3390/antiox9070626
  5. Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway vol.68, pp.51, 2019, https://doi.org/10.1021/acs.jafc.0c06474
  6. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications vol.12, 2021, https://doi.org/10.3389/fphar.2021.779352
  7. Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice vol.73, pp.11, 2019, https://doi.org/10.1080/01635581.2020.1823436