DOI QR코드

DOI QR Code

Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways

  • Received : 2018.03.13
  • Accepted : 2018.05.03
  • Published : 2019.01.01

Abstract

The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated $IC_{50}$ value of $3{\mu}M$ after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G_1$ phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the $PERK/elF2{\alpha}/CHOP$ apoptotic pathway, and mitochondrial $Ca^{2+}$ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER- and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.

Keywords

References

  1. Burke, P. J. (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3, 857-870. https://doi.org/10.1016/j.trecan.2017.10.006
  2. Chi, S. W. (2014) Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 47, 167-172. https://doi.org/10.5483/BMBRep.2014.47.3.261
  3. El-Najjar, N., Dakdouki, S., Darwiche, N., El-Sabban, M., Saliba, N. A. and Gali-Muhtasib, H. (2008) Anti-colon cancer effects of Salograviolide A isolated from Centaurea ainetensis. Oncol. Rep. 19, 897-904.
  4. Fogarty, C. E. and Bergmann, A. (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ. 24, 1390-1400. https://doi.org/10.1038/cdd.2017.47
  5. Gao, D., Hiromura, M., Yasui, H. and Sakurai, H. (2002) Direct reaction between shikonin and thiols induces apoptosis in HL60 cells. Biol. Pharm. Bull. 25, 827-832. https://doi.org/10.1248/bpb.25.827
  6. Gross, A. (2016) BCL-2 family proteins as regulators of mitochondria metabolism. Biochim. Biophys. Acta 1857, 1243-1246. https://doi.org/10.1016/j.bbabio.2016.01.017
  7. Hashimoto, S., Xu, M., Masuda, Y., Aiuchi, T., Nakajo, S., Cao, J., Miyakoshi, M., Ida, Y. and Nakaya, K. (1999) ${\beta}$-Hydroxyisovaleryl shikonin inhibits the cell growth of various cancer cell lines and induces apoptosis in leukemia HL-60 cells through a mechanism different from those of Fas and etoposide. J. Biochem. 125, 17-23. https://doi.org/10.1093/oxfordjournals.jbchem.a022255
  8. Je, H. D., Kim, H. D. and La, H. O. (2015) The inhibitory effect of shikonin on the agonist-induced regulation of vascular contractility. Biomol. Ther. (Seoul) 23, 233-237. https://doi.org/10.4062/biomolther.2014.148
  9. Jeon, H. L., Yi, J. S., Kim, T. S., Oh, Y., Lee, H. J., Lee, M., Bang, J. S., Ko, K., Ahn, I. Y., Ko, K., Kim, J., Park, H. K., Lee, J. K. and Sohn, S. J. (2017) Development of a test method for the evaluation of DNA damage in mouse spermatogonial stem cells. Toxicol. Res. 33,107-118. https://doi.org/10.5487/TR.2017.33.2.107
  10. Jeong, S. Y. and Seol, D. W. (2008) The role of mitochondria in apoptosis. BMB Rep. 41, 11-22. https://doi.org/10.5483/BMBRep.2008.41.1.011
  11. Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H. and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res. 31, 151-156. https://doi.org/10.5487/TR.2015.31.2.151
  12. Lee, Y. (2016) Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicol. Res. 32, 225-230. https://doi.org/10.5487/TR.2016.32.3.225
  13. Li, H., Korennykh, A. V., Behrman, S. L. and Walter, P. (2010) Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl. Acad. Sci. U.S.A. 107, 16113-16118. https://doi.org/10.1073/pnas.1010580107
  14. Liang, W., Cui, J., Zhang, K., Xi, H., Cai, A., Li, J., Gao, Y., Hu, C., Liu, Y., Lu, Y., Wang, N., Wu, X., Wei, B. and Chen, L. (2017) Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget 8,109094-109106. https://doi.org/10.18632/oncotarget.22618
  15. Mills, C. C., Kolb, E. A. and Sampson, V. B. (2018) Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res. 78, 320-325. https://doi.org/10.1158/0008-5472.CAN-17-2782
  16. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A. and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103. https://doi.org/10.1038/47513
  17. Osada, S., Gotoh, A., Yokoi, R., Tsuchiya, H., Sakuratani, T., Sasaki, Y., Okumura, N., Hayashi, H. and Mukai, T. (2018) Effective timing of surgical resection of colorectal cancer liver metastases during chemotherapy. Anticancer Res. 38, 737-743.
  18. Radha, G. and Raghavan, S. C. (2017) BCL2: a promising cancer therapeutic target. Biochim. Biophys. Acta 1868, 309-314.
  19. Rajasekar, S., Park, da J., Park, C., Park, S., Park, Y. H., Kim, S. T., Choi, Y. H. and Choi, Y. W. (2012) In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J. Ethnopharmacol. 144, 335-345. https://doi.org/10.1016/j.jep.2012.09.017
  20. Ryoo, H. D. (2015) Drosophila as a model for unfolded protein response research. BMB Rep. 48, 445-453. https://doi.org/10.5483/BMBRep.2015.48.8.099
  21. Salimi, A., Talatappe, B. S. and Pourahmad, J. (2017) Xylene induces oxidative stress and mitochondria damage in isolated human lymphocytes. Toxicol. Res. 33, 233-238. https://doi.org/10.5487/TR.2017.33.3.233
  22. Slattery, M. L., Pellatt, D. F., Wolff, R. K. and Lundgreen, A. (2016) Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality. Int. J. Mol. Epidemiol. Genet. 7, 45-57.
  23. Theodoratou, E., Timofeeva, M., Li, X., Meng, X. and Ioannidis, J. P. A. (2017) Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. Annu. Rev. Nutr. 37, 293-320. https://doi.org/10.1146/annurev-nutr-071715-051004
  24. Tsai, T. C., Lai, K. H., Su, J. H., Wu, Y. J. and Sheu, J. H. (2018) 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/$eIF2{\alpha}$/ATF4/CHOP signaling pathway. Mar. Drugs 16, E104. https://doi.org/10.3390/md16040104
  25. Wakita, A., Motoyama, S., Sato, Y., Koyota, S., Usami, S., Yoshino, K., Sasaki, T., Imai, K., Saito, H. and Minamiya, Y. (2015) REG $I{\alpha}$ activates c-Jun through MAPK pathways to enhance the radiosensitivity of squamous esophageal cancer cells. Tumour Biol. 36, 5249-5254. https://doi.org/10.1007/s13277-015-3183-y
  26. Wu, Z., Wu, L. J., Li, L. H., Tashiro, S., Onodera, S. and Ikejima, T. (2004) Shikonin regulates HeLa cell death via caspase-3 activation and block age of DNA synthesis. J. Asian Nat. Prod. Res. 6, 155-166. https://doi.org/10.1080/1028602032000169622
  27. Xiong, S., Mu, T., Wang, G. and Jiang, X. (2014) Mitochondria-mediated apoptosis in mammals. Protein Cell. 5,737-749. https://doi.org/10.1007/s13238-014-0089-1
  28. Yang, Q., Guo, S., Wang, S., Qian, Y., Tai, H. and Chen, Z. (2015) Advanced glycation end products-induced chondrocyte apoptosis through mitochondrial dysfunction in cultured rabbit chondrocyte. Fundam. Clin. Pharmacol. 29, 54-61. https://doi.org/10.1111/fcp.12094
  29. Yeh, C. C., Kuo, H. M., Li, T. M., Lin, J. P., Yu, F. S., Lu, H. F., Chung, J. G. and Yang, J. S. (2007) Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo 21, 1011-1019.
  30. Yingkun, N., Lvsong, Z. and Huimin, Y. (2010) Shikonin inhibits the proliferation and induces the apoptosis of human HepG2 cells. Can. J. Physiol. Pharmacol. 88, 1138-1146. https://doi.org/10.1139/Y10-085
  31. Yu, M., Melissa, D. T., Richard, A. C. and Xiao,Y. T. (2013) Endoplasmic reticulum stress and related pathological processes. J. Pharmacol. Biomed. Anal. 1,1000107.
  32. Zarour, L. R., Anand, S., Billingsley, K. G., Bisson, W. H., Cercek, A., Clarke, M. F., Coussens, L. M., Gast, C. E., Geltzeiler, C. B., Hansen, L., Kelley, K. A., Lopez, C. D., Rana, S. R., Ruhl, R., Tsikitis, V. L., Vaccaro, G. M., Wong, M. H. and Mayo, S. C. (2017) Colorectal cancer liver metastasis: evolving paradigms and future directions. Cell Mol. Gastroenterol. Hepatol. 3, 163-173. https://doi.org/10.1016/j.jcmgh.2017.01.006
  33. Zhang, X., Zhu, Y., Duan, W., Feng, C. and He, X. (2015) Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol. Med. Rep. 11, 2755-2760. https://doi.org/10.3892/mmr.2014.3109

Cited by

  1. Comparative Gene Expression Analysis in WM164 Melanoma Cells Revealed That β - β -Dimethylacrylshikonin Leads to ROS Generation, Loss of Mitochondrial Membrane Potential, and Autophagy Indu vol.23, pp.11, 2019, https://doi.org/10.3390/molecules23112823
  2. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines vol.10, 2019, https://doi.org/10.3389/fphar.2019.00758
  3. Eckol Inhibits Particulate Matter 2.5-Induced Skin Keratinocyte Damage via MAPK Signaling Pathway vol.17, pp.8, 2019, https://doi.org/10.3390/md17080444
  4. A Complex Role for Calcium Signaling in Colorectal Cancer Development and Progression vol.17, pp.11, 2019, https://doi.org/10.1158/1541-7786.mcr-19-0429
  5. Niacinamide Protects Skin Cells from Oxidative Stress Induced by Particulate Matter vol.27, pp.6, 2019, https://doi.org/10.4062/biomolther.2019.061
  6. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine vol.14, 2019, https://doi.org/10.1186/s13020-019-0270-9
  7. COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress vol.10, pp.11, 2019, https://doi.org/10.3390/brainsci10110807
  8. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway vol.59, pp.6, 2019, https://doi.org/10.3892/ijo.2021.5279