References
- Abouelkheir, M., Eltantawy, D. A., Saad, M.-A., Abdelrahman, K. M., Sobh, M.-A., Lotfy, A. and Sobh, M. A. (2016) Mesenchymal stem cells versus their conditioned medium in the treatment of cisplatin-induced acute kidney injury: evaluation of efficacy and cellular side effects. Int. J. Clin. Exp. Med. 9, 23222-23234.
- Alcayaga-Miranda, F., Cuenca, J., Luz-Crawford, P., Aguila-Diaz, C., Fernandez, A., Figueroa, F. E. and Khoury, M. (2015) Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 6, 32. https://doi.org/10.1186/s13287-015-0013-5
- Arutyunyan, I., Elchaninov, A., Makarov, A. and Fatkhudinov, T. (2016) Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016, 6901286.
- Bahamondes, F., Flores, E., Cattaneo, G., Bruna, F. and Conget, P. (2017) Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells. BMC Vet. Res. 13, 166. https://doi.org/10.1186/s12917-017-1053-0
- Bai, C., Gao, Y., Li, Q., Feng, Y., Yu, Y., Meng, G., Zhang, M. and Guan, W. (2015) Differentiation of chicken umbilical cord mesenchymal stem cells into beta-like pancreatic islet cells. Artif. Cells Nanomed. Biotechnol. 43, 106-111. https://doi.org/10.3109/21691401.2013.864662
- Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A. and Hoffman, R. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42-48. https://doi.org/10.1016/S0301-472X(01)00769-X
- Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A. and Nikbin, B. (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7, 14. https://doi.org/10.1186/1471-2121-7-14
- Boomsma, R. A. and Geenen, D. L. (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE 7, e35685. https://doi.org/10.1371/journal.pone.0035685
- Brown, S. G., Harman, R. J. and Black, L. L. (2012) Adipose-derived stem cell therapy for severe muscle tears in working German shepherds: two case reports. Stem Cell Discovery 2, 41-44. https://doi.org/10.4236/scd.2012.22007
- Burr, S. P., Dazzi, F. and Garden, O. A. (2013) Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol. Cell Biol. 91, 12-18. https://doi.org/10.1038/icb.2012.60
- Byeon, J. S., Lee, J., Kim, D. H., Lee, G.-B., Kim, H.-R., Gu, N.-Y., Cho, I.-S. and Cha, S.-H. (2016) Canine mesenchymal stem cells immunomodulate atopic dermatitis through the induction of regulatory T cells in an ex vivo experimental study. J. Prev. Vet. Med. 40, 12-21. https://doi.org/10.13041/jpvm.2016.40.1.12
- Caplan, A. I. (1991) Mesenchymal stem cells. J. Orthop. Res. 9, 641-650. https://doi.org/10.1002/jor.1100090504
- Carrade Holt, D. D., Wood, J. A., Granick, J. L., Walker, N. J., Clark, K. C. and Borjesson, D. L. (2014) Equine mesenchymal stem cells inhibit T cell proliferation through different mechanisms depending on tissue source. Stem Cells Dev. 23, 1258-1265. https://doi.org/10.1089/scd.2013.0537
- Case, J. B., Palmer, R., Valdes-Martinez, A., Egger, E. L. and Haussler, K. K. (2013) Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis. Vet. Surg. 42, 355-360. https://doi.org/10.1111/j.1532-950X.2013.12007.x
- Chen, L. B., Jiang, X. B. and Yang, L. (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J. Gastroenterol. 10, 3016-3020. https://doi.org/10.3748/wjg.v10.i20.3016
- Cyranoski, D. (2013) Stem cells boom in vet clinics. Nature 496, 148-149. https://doi.org/10.1038/496148a
- de Mattos Carvalho, A., Alves, A. L. G., de Oliveira, P. G. G., Cisneros Alvarez, L. E., Amorim, R. L., Hussni, C. A. and Deffune, E. (2011) Use of adipose tissue-derived mesenchymal stem cells for experimental tendinitis therapy in equines. J. Equine Vet. Sci. 31, 26-34. https://doi.org/10.1016/j.jevs.2010.11.014
- Domergue, S., Bony, C., Maumus, M., Toupet, K., Frouin, E., Rigau, V., Vozenin, M. C., Magalon, G., Jorgensen, C. and Noel, D. (2016) Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars. PLoS ONE 11, e0156161. https://doi.org/10.1371/journal.pone.0156161
- Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317. https://doi.org/10.1080/14653240600855905
- Engela, A. U., Baan, C. C., Dor, F. J., Weimar, W. and Hoogduijn, M. J. (2012) On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front. Immunol. 3, 126. https://doi.org/10.3389/fimmu.2012.00126
- Engela, A. U., Baan, C. C., Peeters, A. M., Weimar, W. and Hoogduijn, M. J. (2013) Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells. Cell Transplant. 22, 41-54. https://doi.org/10.3727/096368912X636984
- English, K. and Mahon, B. P. (2011) Allogeneic mesenchymal stem cells: agents of immune modulation. J. Cell. Biochem. 112, 1963-1968. https://doi.org/10.1002/jcb.23119
- Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., Fioretti, M. C. and Puccetti, P. (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9, 1069-1077. https://doi.org/10.1038/sj.cdd.4401073
- Fei, X., Jiang, S., Zhang, S., Li, Y., Ge, J., He, B., Goldstein, S. and Ruiz, G. (2013) Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell Biochem. Biophys. 67, 689-694. https://doi.org/10.1007/s12013-013-9558-z
- Friedenstein, A. J., Chailakhjan, R. K. and Lalykina, K. S. (1970) The development of fibroblast colonies in monolayer cultures of guineapig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393-403.
- Gaafar, T., Attia, W., Mahmoud, S., Sabry, D., Aziz, O. A., Rasheed, D. and Hamza, H. (2017) Cardioprotective effects of wharton jelly derived mesenchymal stem cell transplantation in a rodent model of myocardial injury. Int. J. Stem Cells 10, 48-59. https://doi.org/10.15283/ijsc16063
- Ganguly, P., El-Jawhari, J. J., Giannoudis, P. V., Burska, A. N., Ponchel, F. and Jones, E. A. (2017) Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant. 26, 1520-1529. https://doi.org/10.1177/0963689717721201
- Gibson, M., Brown, S. G. and Brown, N. O. (2017) Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs. Can. Vet. J. 58, 241-246.
- Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. and Dazzi, F. (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821-2827. https://doi.org/10.1182/blood-2004-09-3696
- Guercio, A., Di Marco, P., Casella, S., Cannella, V., Russotto, L., Purpari, G., Di Bella, S. and Piccione, G. (2012) Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 36, 189-194. https://doi.org/10.1042/CBI20110304
- Hakki, S. S., Turac, G., Bozkurt, S. B., Kayis, S. A., Hakki, E. E., Sahin, E., Subasi, C. and Karaoz, E. (2017) Comparison of different sources of mesenchymal stem cells: palatal versus lipoaspirated adipose tissue. Cells Tissues Organs 204, 228-240. https://doi.org/10.1159/000478998
- Han, S. M., Kim, H. T., Kim, K. W., Jeon, K. O., Seo, K. W., Choi, E. W. and Youn, H. Y. (2015) CTLA4 overexpressing adipose tissuederived mesenchymal stem cell therapy in a dog with steroid-refractory pemphigus foliaceus. BMC Vet. Res. 11, 49. https://doi.org/10.1186/s12917-015-0371-3
- Jacobs, S. A., Roobrouck, V. D., Verfaillie, C. M. and Van Gool, S. W. (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol. Cell Biol. 91, 32-39. https://doi.org/10.1038/icb.2012.64
- Kaewsuwan, S., Song, S. Y., Kim, J. H. and Sung, J. H. (2012) Mimicking the functional niche of adipose-derived stem cells for regenerative medicine. Expert Opin. Biol. Ther. 12, 1575-1588. https://doi.org/10.1517/14712598.2012.721763
- Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21-28. https://doi.org/10.4049/jimmunol.1101029
- Kang, J. W., Kang, K. S., Koo, H. C., Park, J. R., Choi, E. W. and Park, Y. H. (2008) Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 17, 681-693. https://doi.org/10.1089/scd.2007.0153
- Kim, C. H., Lee, J. H., Won, J. H. and Cho, M. K. (2011) Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J. Korean Med. Sci. 26, 726-733. https://doi.org/10.3346/jkms.2011.26.6.726
- Kim, H. S., Kim, K. H., Kim, S. H., Kim, Y. S., Koo, K. T., Kim, T. I., Seol, Y. J., Ku, Y., Rhyu, I. C., Chung, C. P. and Lee, Y. M. (2010) Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells. J. Periodontal. Implant. Sci. 40, 265-270. https://doi.org/10.5051/jpis.2010.40.6.265
- Kim, H. W., Song, W. J., Li, Q., Han, S. M., Jeon, K. O., Park, S. C., Ryu, M. O., Chae, H. K., Kyeong, K. and Youn, H. Y. (2016) Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J. Vet. Sci. 17, 539-548. https://doi.org/10.4142/jvs.2016.17.4.539
- Kisiel, A. H., McDuffee, L. A., Masaoud, E., Bailey, T. R., Esparza Gonzalez, B. P. and Nino-Fong, R. (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am. J. Vet. Res. 73, 1305-1317. https://doi.org/10.2460/ajvr.73.8.1305
- Koch, T. G., Heerkens, T., Thomsen, P. D. and Betts, D. H. (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 7, 26. https://doi.org/10.1186/1472-6750-7-26
- Kondo, M., Yamaoka, K., Sakata, K., Sonomoto, K., Lin, L., Nakano, K. and Tanaka, Y. (2015) Contribution of the Interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol. 67, 1250-1260. https://doi.org/10.1002/art.39036
- Kopen, G. C., Prockop, D. J. and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U.S.A. 96, 10711-10716. https://doi.org/10.1073/pnas.96.19.10711
- Krampera, M., Galipeau, J., Shi, Y., Tarte, K. and Sensebe, L. (2013) Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15, 1054-1061. https://doi.org/10.1016/j.jcyt.2013.02.010
- Lawson, J., Elliott, J., Wheeler-Jones, C., Syme, H. and Jepson, R. (2015) Renal fibrosis in feline chronic kidney disease: known mediators and mechanisms of injury. Vet. J. 203, 18-26. https://doi.org/10.1016/j.tvjl.2014.10.009
- Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E. and Ringden, O. (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57, 11-20. https://doi.org/10.1046/j.1365-3083.2003.01176.x
- Lee, J. Y., Uzuka, Y., Tanabe, S. and Sarashina, T. (2004) Prevalence of thyroglobulin autoantibodies detected by enzyme-linked immunosorbent assay of canine serum in hypothyroid, obese and healthy dogs in Japan. Res. Vet. Sci. 76, 129-132. https://doi.org/10.1016/j.rvsc.2003.10.002
- Lee, W. S., Suzuki, Y., Graves, S. S., Iwata, M., Venkataraman, G. M., Mielcarek, M., Peterson, L. J., Ikehara, S., Torok-Storb, B. and Storb, R. (2011) Canine bone marrow-derived mesenchymal stromal cells suppress alloreactive lymphocyte proliferation in vitro but fail to enhance engraftment in canine bone marrow transplantation. Biol. Blood Marrow Transplant. 17, 465-475. https://doi.org/10.1016/j.bbmt.2010.04.016
- Lei, J., Wang, Z., Hui, D., Yu, W., Zhou, D., Xia, W., Chen, C., Zhang, Q., Wang, Z., Zhang, Q. and Xiang, A. P. (2011) Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cell. Immunol. 271, 147-156. https://doi.org/10.1016/j.cellimm.2011.06.014
- Lim, J. Y., Im, K. I., Lee, E. S., Kim, N., Nam, Y. S., Jeon, Y. W. and Cho, S. G. (2016) Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci. Rep. 6, 26851. https://doi.org/10.1038/srep26851
- Liu, Y. L., Liu, W. H., Sun, J., Hou, T. J., Liu, Y. M., Liu, H. R., Luo, Y. H., Zhao, N. N., Tang, Y. and Deng, F. M. (2014) Mesenchymal stem cell-mediated suppression of hypertrophic scarring is p53 dependent in a rabbit ear model. Stem Cell Res. Ther. 5, 136. https://doi.org/10.1186/scrt526
- Lo, B. and Parham, L. (2009) Ethical issues in stem cell research. Endocr. Rev. 30, 204-213. https://doi.org/10.1210/er.2008-0031
- Ma, S., Chen, X., Wang, L., Wei, Y., Ni, Y., Chu, Y., Liu, Y., Zhu, H., Zheng, R. and Zhang, Y. (2017) Repairing effects of ICAM-1-expressing mesenchymal stem cells in mice with autoimmune thyroiditis. Exp. Ther. Med. 13, 1295-1302. https://doi.org/10.3892/etm.2017.4131
- Mahla, R. S. (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283. https://doi.org/10.1155/2016/6940283
- Matsui, F., Babitz, S. A., Rhee, A., Hile, K. L., Zhang, H. and Meldrum, K. K. (2017) Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am. J. Physiol. Renal Physiol. 312, F25-F32. https://doi.org/10.1152/ajprenal.00311.2016
- Matsui, F. and Meldrum, K. K. (2012) The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. J. Surg. Res. 178, 339-345. https://doi.org/10.1016/j.jss.2012.06.050
- Mrozik, K. M., Zilm, P. S., Bagley, C. J., Hack, S., Hoffmann, P., Gronthos, S. and Bartold, P. M. (2010) Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins. Stem Cells De. 19, 1485-1499. https://doi.org/10.1089/scd.2009.0446
- Najimi, M., Berardis, S., El-Kehdy, H., Rosseels, V., Evraerts, J., Lombard, C., El Taghdouini, A., Henriet, P., van Grunsven, L. and Sokal, E. M. (2017) Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res. Ther. 8, 131. https://doi.org/10.1186/s13287-017-0575-5
- Nordgren, T. M., Bailey, K. L., Heires, A. J., Katafiasz, D. and Romberger, D. J. (2018) Effects of agricultural organic dusts on human lung-resident mesenchymal stem (stromal) cell function. Toxicol. Sci. 162, 635-644. https://doi.org/10.1093/toxsci/kfx286
- Otabe, K., Muneta, T., Kawashima, N., Suda, H., Tsuji, K. and Sekiya, I. (2012) Comparison of gingiva, dental pulp, and periodontal ligament cells from the standpoint of mesenchymal stem cell properties. Cell Med. 4, 13-21. https://doi.org/10.3727/215517912X653319
- Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C. and Favrot, M. C. (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19, 1597-1604. https://doi.org/10.1038/sj.leu.2403871
- Raabe, O., Shell, K., Goessl, A., Crispens, C., Delhasse, Y., Eva, A., Scheiner-Bobis, G., Wenisch, S. and Arnhold, S. (2013) Effect of extracorporeal shock wave on proliferation and differentiation of equine adipose tissue-derived mesenchymal stem cells in vitro. Am. J. Stem Cells. 8, 2, 62-73.
- Rawlings, J. S., Rosler, K. M. and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J Cell Sci. 117, 1281-1283. https://doi.org/10.1242/jcs.00963
- Reiter, J., Drummond, S., Sammour, I., Huang, J., Florea, V., Dornas, P., Hare, J. M., Rodrigues, C. O. and Young, K. C. (2017) Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir. Res. 18, 137. https://doi.org/10.1186/s12931-017-0620-z
- Ren, H., Sang, Y., Zhang, F., Liu, Z., Qi, N. and Chen, Y. (2016) Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int. 2016, 3516574.
- Rhee, K. J., Lee, J. I. and Eom, Y. W. (2015) Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int. J. Mol. Sci. 16, 30015-30033. https://doi.org/10.3390/ijms161226215
- Ryan, J. M., Barry, F., Murphy, J. M. and Mahon, B. P. (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin. Exp. Immunol. 149, 353-363. https://doi.org/10.1111/j.1365-2249.2007.03422.x
- Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K. and Ozawa, K. (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228-234. https://doi.org/10.1182/blood-2006-02-002246
- Schlosser, S., Dennler, C., Schweizer, R., Eberli, D., Stein, J. V., Enzmann, V., Giovanoli, P., Erni, D. and Plock, J. A. (2012) Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc. Res. 83, 267-275. https://doi.org/10.1016/j.mvr.2012.02.011
- Schuh, E. M., Friedman, M. S., Carrade, D. D., Li, J., Heeke, D., Oyserman, S. M., Galuppo, L. D., Lara, D. J., Walker, N. J., Ferraro, G. L., Owens, S. D. and Borjesson, D. L. (2009) Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am. J. Vet. Res. 70, 1526-1535. https://doi.org/10.2460/ajvr.70.12.1526
- Shabbir, A., Zisa, D., Lin, H., Mastri, M., Roloff, G., Suzuki, G. and Lee, T. (2010) Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am. J. Physiol. Heart Circ. Physiol. 299, H1428-H1438. https://doi.org/10.1152/ajpheart.00488.2010
- Sharma, R. R., Pollock, K., Hubel, A. and McKenna, D. (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54, 1418-1437. https://doi.org/10.1111/trf.12421
- Singer, N. G. and Caplan, A. I. (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. 6, 457-478. https://doi.org/10.1146/annurev-pathol-011110-130230
- Sousa, M. G., Paulino-Junior, D., Pascon, J. P., Pereira-Neto, G. B., Carareto, R., Champion, T. and Camacho, A. A. (2011) Cardiac function in dogs with chronic Chagas cardiomyopathy undergoing autologous stem cell transplantation into the coronary arteries. Can. Vet. J. 52, 869-874.
- Squillaro, T., Peluso, G. and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25, 829-848. https://doi.org/10.3727/096368915X689622
- Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O. and Michalek, J. (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21, 2724-2752. https://doi.org/10.1089/scd.2011.0722
- Teixeira, F. G., Panchalingam, K. M., Anjo, S. I., Manadas, B., Pereira, R., Sousa, N., Salgado, A. J. and Behie, L. A. (2015) Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res. Ther. 6, 133. https://doi.org/10.1186/s13287-015-0124-z
- Tidd, N., Michelsen, J., Hilbert, B. and Quinn, J. C. (2017) Minicircle mediated gene delivery to canine and equine mesenchymal stem cells. Int. J. Mol. Sci. 18, E819. https://doi.org/10.3390/ijms18040819
- Ulrich, D., Muralitharan, R. and Gargett, C. E. (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin. Biol. Ther. 13, 1387-1400. https://doi.org/10.1517/14712598.2013.826187
- Ullah, I., Subbarao, R. B. and Rho, G. J. (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 35, e00191. https://doi.org/10.1042/BSR20150025
- Vidal, M. A., Robinson, S. O., Lopez, M. J., Paulsen, D. B., Borkhsenious, O., Johnson, J. R., Moore, R. M. and Gimble, J. M. (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet. Surg. 37, 713-724. https://doi.org/10.1111/j.1532-950X.2008.00462.x
- Volk, S. W. and Theoret, C. (2013) Translating stem cell therapies: the role of companion animals in regenerative medicine. Wound Repair Regen. 21, 382-394. https://doi.org/10.1111/wrr.12044
- Wipff, P. J. and Hinz, B. (2008) Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship. Eur. J. Cell Biol. 87, 601-615. https://doi.org/10.1016/j.ejcb.2008.01.012
- Xiong, H., Bai, C., Wu, S., Gao, Y., Lu, T., Hu, Q., Guan, W. and Ma, Y. (2014) Biological characterization of mesenchymal stem cells from bovine umbilical cord. Animal Cells and Systems 18, 59-67. https://doi.org/10.1080/19768354.2014.880370
- Zhu, W. and Liang, M. (2015) Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int. 2015, 972313. https://doi.org/10.1155/2015/972313
Cited by
- Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells vol.26, pp.5, 2019, https://doi.org/10.4062/biomolther.2018.134
- Case Report: Exploratory treatment with multiple intravenous infusion of the autologous adipose tissue-derived mesenchymal stem cells for the treatment of Diamond-Blackfan anemia patient vol.8, 2019, https://doi.org/10.12688/f1000research.20391.1
- Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review) vol.14, pp.4, 2019, https://doi.org/10.1116/1.5098332
- In vitro differentiation of conjunctiva mesenchymal stem cells into insulin producing cells on natural and synthetic electrospun scaffolds vol.62, 2019, https://doi.org/10.1016/j.biologicals.2019.10.004
- Mesenchymal stem cells therapy in companion animals: useful for immune-mediated diseases? vol.15, 2019, https://doi.org/10.1186/s12917-019-2087-2
- The Exposure to Osteoarthritic Synovial Fluid Enhances the Immunomodulatory Profile of Adipose Mesenchymal Stem Cell Secretome vol.2020, 2019, https://doi.org/10.1155/2020/4058760
- Human Mesenchymal Stem Cells for Spinal Cord Injury vol.15, 2019, https://doi.org/10.2174/1574888x15666200316164051
- Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis vol.8, 2019, https://doi.org/10.3389/fbioe.2020.575057
- Pre-conditioning of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Increases Their Immunomodulatory Capacity vol.7, 2019, https://doi.org/10.3389/fvets.2020.00318
- Mesenchymal Stromal Cell Immunology for Efficient and Safe Treatment of Osteoarthritis vol.8, 2019, https://doi.org/10.3389/fcell.2020.567813
- Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases vol.12, pp.3, 2020, https://doi.org/10.4252/wjsc.v12.i3.178
- Melatonin and Mesenchymal Stem Cells as a Key for Functional Integrity for Liver Cancer Treatment vol.21, pp.12, 2019, https://doi.org/10.3390/ijms21124521
- Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy vol.77, pp.14, 2020, https://doi.org/10.1007/s00018-020-03454-6
- Transcriptomic Analysis of Human Mesenchymal Stem Cell Therapy in Incontinent Rat Injured Urethra vol.26, pp.13, 2019, https://doi.org/10.1089/ten.tea.2020.0033
- Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease vol.12, pp.10, 2019, https://doi.org/10.3390/pharmaceutics12100922
- Medicinal signaling cells: A potential antimicrobial drug store vol.235, pp.11, 2019, https://doi.org/10.1002/jcp.29728
- Cryopreservation of Mesenchymal Stem Cells Using Medical Grade Ice Nucleation Inducer vol.21, pp.22, 2019, https://doi.org/10.3390/ijms21228579
- Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Treatment of Viral Diseases vol.10, pp.4, 2021, https://doi.org/10.3390/pathogens10040409
- Transcriptional Profile of Cytokines, Regulatory Mediators and TLR in Mesenchymal Stromal Cells after Inflammatory Signaling and Cell-Passaging vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147309
- Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies vol.10, pp.13, 2019, https://doi.org/10.3390/jcm10132788
- Toward a Better Regeneration through Implant‐Mediated Immunomodulation: Harnessing the Immune Responses vol.8, pp.16, 2019, https://doi.org/10.1002/advs.202100446
- What Molecular Recognition Systems Do Mesenchymal Stem Cells/Medicinal Signaling Cells (MSC) Use to Facilitate Cell-Cell and Cell Matrix Interactions? A Review of Evidence and Options vol.22, pp.16, 2019, https://doi.org/10.3390/ijms22168637
- Mesenchymal Stromal Cells: Potential Option for COVID-19 Treatment vol.13, pp.9, 2019, https://doi.org/10.3390/pharmaceutics13091481
- Influence of extracellular nanovesicles derived from adipose‑derived stem cells on nucleus pulposus cell from patients with intervertebral disc degeneration vol.22, pp.6, 2021, https://doi.org/10.3892/etm.2021.10866
- Mesenchymal stem cell therapies for Alzheimer’s disease: preclinical studies vol.36, pp.7, 2019, https://doi.org/10.1007/s11011-021-00777-6
- Immunomodulation and Regenerative Capacity of MSCs for Long-COVID vol.22, pp.22, 2019, https://doi.org/10.3390/ijms222212421
- Fibronectin-coating enhances attachment and proliferation of mesenchymal stem cells on a polyurethane meniscal scaffold vol.18, 2019, https://doi.org/10.1016/j.reth.2021.11.001
- Basement membrane proteins modulate cell migration on bovine pericardium extracellular matrix scaffold vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-84161-5