DOI QR코드

DOI QR Code

주제어 네트워크 분석(network analysis)을 통한 국내 감정노동의 연구동향 탐색

Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis

  • 이남연 (한신대학교 IT경영학과) ;
  • 김준환 (성결대학교 파이데이아학부) ;
  • 문형진 (성결대학교 정보통신공학부)
  • Lee, Namyeon (Department of IT Management, Hanshin University) ;
  • Kim, Joon-Hwan (Department of Paideia, Sungkyul University) ;
  • Mun, Hyung-Jin (Department of Information & Communication Engineering, Sungkyul University)
  • 투고 : 2019.01.08
  • 심사 : 2019.03.20
  • 발행 : 2019.03.28

초록

본 연구는 최근 10년 동안(2009-2018) 국내 학술지에 발표된 감정노동(emotional labor) 관련 892편의 논문을 텍스트 마이닝(text-mining) 및 네트워크 분석(network analysis)을 활용하여 연구동향을 파악하는 것이 목적이다. 이를 위해 이들 논문의 주제어를 수집 및 코딩하여 최종적으로 871개의 노드(node)와 2625개의 링크(link)로 변환시켜 네트워크 텍스트로 분석하였다. 첫째, 네트워크 텍스트 분석 결과로 동시출현빈도에 따른 상위 4개 주요 주제어는 번아웃, 이직의도, 직무스트레스, 직무만족 순으로 나타났으며, 연결중심성에 따른 상위 4개 주제어들의 빈도와 연결중심성 모두 비교적 높은 것으로 확인되었다. 둘째, 연결중심성 상위 4개의 주제어를 바탕으로 자아(ego)연결망 분석을 실시하여 각 네트워크의 연결중심도에 대한 주제어를 제시하였다.

The purpose of this study was to identify research trends of 892 domestic articles (2009-2018) related to emotional labor by using text-mining and network analysis. To this end, the keyword of these papers were collected and coded and eventually converted to 871 nodes and 2625 links for network text analysis. First, network text analysis revealed that the top four main keyword, according to co-occurrence frequency, were burnout, turnover intention, job stress, and job satisfaction in order and that the frequency and the top four core keyword by degree centrality were all relatively the high. Second, based on the top four core keyword of degree centrality the ego network analysis was conducted and the keyword for connection centroid of each network were presented.

키워드

JKOHBZ_2019_v9n3_68_f0001.png 이미지

Fig. 1. Overall research process

JKOHBZ_2019_v9n3_68_f0002.png 이미지

Fig. 2. Rule set for data cleansing

JKOHBZ_2019_v9n3_68_f0003.png 이미지

Fig. 3. Co-occurrence keyword network (top-50)

JKOHBZ_2019_v9n3_68_f0004.png 이미지

Fig. 4. Ego-network of ‘Burnout’ keyword

JKOHBZ_2019_v9n3_68_f0005.png 이미지

Fig. 5. Ego-network of ‘Turnover Intention’ keyword

JKOHBZ_2019_v9n3_68_f0006.png 이미지

Fig. 6. Ego-network of ‘Occupational Stress’ keyword

JKOHBZ_2019_v9n3_68_f0007.png 이미지

Fig. 7. Ego-network of ‘Job Satisfaction’ keyword

Table 1. Co-occurrence matrix of high frequency keyword

JKOHBZ_2019_v9n3_68_t0001.png 이미지

Table 2. Top 10 keyword with centrality and frequency

JKOHBZ_2019_v9n3_68_t0002.png 이미지

참고문헌

  1. A. R. Hochschild. (1983). The managed heart: Commercialism of human feeling. Berkeley.
  2. A. Rafaeli & R. I. Sutton. (1991). Emotional contrast strategies as means of social influence: Lessons from criminal interrogators and bill collectors. Academy of Management Journal, 34(4), 749-775. https://doi.org/10.2307/256388
  3. E. S. An & J. E. Chae. (2018). The effects of job characteristics of elderly caregivers on their job satisfaction and burnouts: Mediating effects of emotional labor. Journal of Digital Convergence, 16(1), 21-33. DOI : 10.14400/JDC.2018.16.1.021
  4. S. Fineman. (2000). Emotion in organizations. Sage.
  5. A. S. Wharton. (1993). The affective consequences of service work: Managing emotions on the job. Work and Occupations, 20(2), 205-232. https://doi.org/10.1177/0730888493020002004
  6. B. M. Staw & S. G. Barsade. (1993). Affect and managerial performance: A test of the sadder-but-wiser vs. happier-and-smarter hypotheses. Administrative Science Quarterly, 304-331.
  7. H. M. Weiss. (1990). Learning theory and industrial and organizational psychology.
  8. S. J. Grove & R. P. Fisk. (1989). Impression management in services marketing: A dramaturgical perspective. In R. A. Giacalone & P. Rosenfeld (Eds.), Impression management in the organization (pp. 427-438). Hillsdale, NJ: Erlbaum.
  9. C. M. Brotheridge & R. T. Lee. (2003). Development and validation of the emotional labour scale. Journal of Occupational and Organizational Psychology, 76(3), 365-379. DOI : 10.1348/096317903769647229
  10. Y. Liu, L. M. Prati, P. L. Perrewe & G. R. Ferris. (2008). The relationship between emotional resources and emotional labor: An exploratory study. Journal of Applied Social Psychology, 38(10), 2410-2439. DOI : 10.1111/j.1559-1816.2008.00398.x
  11. H. Lee & J. H. Kim. (2018). A convergence study on the structural relationships among emotional labor and work performance of information security professionals. Journal of the Korea Convergence Society, 9(1), 67-74. DOI : 10.15207/JKCS.2018.9.1.067
  12. S. Y. Ahn. (2017). The convergence relation of communication, emotional labor, and organizational commitment among nurse. Journal of the Korea Convergence Society, 8(6), 147-152. DOI : 10.15207/JKCS.2017.8.6.147
  13. H. E. Lee & J. H. Kim. (2019). Effects of acceptance of appreciative Inquiry and emotional labor on organizational commitment and job satisfaction. Journal of Digital Convergence, 17(1), 149-158. DOI : 10.14400/JDC.2019.17.1.149
  14. Q. He (1999). Knowledge discovery through co-word analysis.
  15. G. Y. Liu, J. M. Hu & H. L. Wang. (2011). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203-217. https://doi.org/10.1007/s11192-011-0586-4
  16. C. P. Hu, J. M. Hu, S. L. Deng & Y. Liu. (2013). A co-word analysis of library and information science in China. Scientometrics, 97(2), 369-382. https://doi.org/10.1007/s11192-013-1076-7
  17. J. Cho. (2011). A study for research area of library and information science by network text analysis. Journal of the Korean Society for Information Management, 28(4), 65-83. DOI : 10.3743/KOSIM.2011.28.4.065
  18. S. K. Seo & E. K. Chung. (2013). Domain analysis on the field of open access by Co-word analysis. Journal of the Korean Biblia Society for Library and Information Science, 24(1), 207-228. DOI : 10.14699/kbiblia.2013.24.1.207
  19. L. C. Freeman. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543