DOI QR코드

DOI QR Code

Autumn olive (Elaeagnus umbellata Thunb.) berry reduces fasting and postprandial glucose levels in mice

  • Kim, Jung-In (Department of Smart Food and Drug, School of Bio Nano Information Technology, Inje University) ;
  • Baek, Hee-Jin (Department of Smart Food and Drug, School of Bio Nano Information Technology, Inje University) ;
  • Han, Do-Won (Department of Smart Food and Drug, School of Bio Nano Information Technology, Inje University) ;
  • Yun, Jeong-A (Department of Smart Food and Drug, School of Bio Nano Information Technology, Inje University)
  • Received : 2018.07.16
  • Accepted : 2018.10.25
  • Published : 2019.02.01

Abstract

BACKGROUND/OBJECTIVES: Fasting and postprandial hyperglycemia should be controlled to avoid complications of diabetes mellitus. This study investigated the effects of autumn olive (Elaeagnus umbellata Thunb.) berry (AOB) on fasting and postprandial hyperglycemia in mice. MATERIALS/METHODS: In vitro ${\alpha}$-glucosidase inhibitory effect of AOB was determined. Maltose solution (2 g/kg) with and without AOB extract at 500 mg/kg or acarbose at 50 mg/kg was orally administered to normal mice after overnight fasting and glucose levels were measured. To study the effects of chronic consumption of AOB, db/db mice received the basal diet or a diet containing AOB extract at 0.4% or 0.8%, or acarbose at 0.04% for 7 weeks. Blood glycated hemoglobin and serum glucose and insulin levels were measured. Expression of adiponectin protein in epididymal white adipose tissue was determined by Western blotting. RESULTS: In vitro inhibitory effect of AOB extract on ${\alpha}$-glucosidase was 92% as strong as that of acarbose. The AOB extract (500 mg/kg) or acarbose (50 mg/kg) significantly suppressed the postprandial rise of blood glucose after maltose challenge and the area under the glycemic response curve in normal mice. The AOB extract at 0.4% or 0.8% of diet or acarbose at 0.04% of diet significantly lowered levels of serum glucose and blood glycated hemoglobin and homeostasis model assessment for insulin resistance values in db/db mice. The expression of adiponectin protein in adipose tissue was significantly elevated by the consumption of AOB at 0.8% of diet. CONCLUSIONS: Autumn olive (E. umbellata Thunb.) berry may reduce postprandial hyperglycemia by inhibiting ${\alpha}$-glucosidase in normal mice. Chronic consumption of AOB may alleviate fasting hyperglycemia in db/db mice partly by inhibiting ${\alpha}$-glucosidase and upregulating adiponectin expression.

Keywords

References

  1. Zatalia SR, Sanusi H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med Indones 2013;45:141-7.
  2. Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2005;2:29. https://doi.org/10.1186/1743-7075-2-29
  3. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998;21:1414-31. https://doi.org/10.2337/diacare.21.9.1414
  4. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16: 434-44. https://doi.org/10.2337/diacare.16.2.434
  5. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, Arky RA, Speizer FE, Hennekens CH. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med 1991;151:1141-7. https://doi.org/10.1001/archinte.1991.00400060077013
  6. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: the epidemiological evidence. Diabetologia 2001;44:2107-14. https://doi.org/10.1007/s001250100020
  7. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20. https://doi.org/10.1038/414813a
  8. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 2005;54:1-7. https://doi.org/10.2337/diabetes.54.1.1
  9. Standl E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab 1999;1:215-20. https://doi.org/10.1046/j.1463-1326.1999.00021.x
  10. Bressler R, Johnson D. New pharmacological approaches to therapy of NIDDM. Diabetes Care 1992;15:792-805. https://doi.org/10.2337/diacare.15.6.792
  11. Kumar S, Narwal S, Kumar V, Prakash O. $\alpha$-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 2011;5:19-29. https://doi.org/10.4103/0973-7847.79096
  12. Mai TT, Thu NN, Tien PG, Van Chuyen N. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J Nutr Sci Vitaminol (Tokyo) 2007;53:267-76. https://doi.org/10.3177/jnsv.53.267
  13. Pei R, Yu M, Bruno R, Bolling BW. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries. J Funct Foods 2015;16:305-14. https://doi.org/10.1016/j.jff.2015.04.028
  14. Khattak KF. Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry. J Med Plants Res 2012;6:5196-203. https://doi.org/10.5897/JMPR11.1128
  15. Fordham IM, Clevidence BA, Wiley ER, Zimmerman RH. Fruit of autumn olive: a rich source of lycopene. HortScience 2001;36: 1136-7. https://doi.org/10.21273/HORTSCI.36.6.1136
  16. Wang SY, Fordham IM. Differences in chemical composition and antioxidant capacity among different genotypes of autumn olive (Elaeagnus umbellate Thunb.). Food Technol Biotechnol 2007;45: 402-9.
  17. Meeprom A, Sompong W, Suwannaphet W, Yibchok-anun S, Adisakwattana S. Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways. Br J Nutr 2011;106: 1173-81. https://doi.org/10.1017/S0007114511001589
  18. Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of $\alpha$-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 1997;61:177-8. https://doi.org/10.1271/bbb.61.177
  19. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51. https://doi.org/10.1093/jn/123.11.1939
  20. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care 1997;20:1087-92. https://doi.org/10.2337/diacare.20.7.1087
  21. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent $\alpha$-glucosidase and $\alpha$-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 2009;615:252-6. https://doi.org/10.1016/j.ejphar.2009.05.017
  22. Karato M, Yamaguchi K, Takei S, Kino T, Yazawa K. Inhibitory effects of pasuchaca (Geranium dielsiaum) extract on $\alpha$-glucosidase in mouse. Biosci Biotechnol Biochem 2006;70:1482-4. https://doi.org/10.1271/bbb.50420
  23. Miura T, Koide T, Ohichi R, Kako M, Usami M, Ishihara E, Yasuda N, Ishida H, Seino Y, Tanigawa K. Effect of acarbose ($\alpha$-glucosidase inhibitor) on disaccharase activity in small intestine in KK-Ay and ddY mice. J Nutr Sci Vitaminol (Tokyo) 1998;44:371-9. https://doi.org/10.3177/jnsv.44.371
  24. Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med 2003;163:1306-16. https://doi.org/10.1001/archinte.163.11.1306
  25. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 2013;12:43. https://doi.org/10.1186/2251-6581-12-43
  26. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007;125:451-72.
  27. Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, Ryan EA, Tan MH, Wolever TM. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med 1994;121: 928-35. https://doi.org/10.7326/0003-4819-121-12-199412150-00004
  28. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 1999;22:960-4. https://doi.org/10.2337/diacare.22.6.960
  29. Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J, Chiasson JL, Rabasa-Lhoret R, Maheux P, Tessier D, Wolever T, Josse RG, Elahi D. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 2000;23:1162-7. https://doi.org/10.2337/diacare.23.8.1162
  30. Breuer HW. Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes. Int J Clin Pharmacol Ther 2003;41:421-40. https://doi.org/10.5414/CPP41421
  31. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res Int 2014;2014:658913. https://doi.org/10.1155/2014/658913
  32. Alexandraki KI, Piperi C, Ziakas PD, Apostolopoulos NV, Makrilakis K, Syriou V, Diamanti-Kandarakis E, Kaltsas G, Kalofoutis A. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J Clin Immunol 2008;28:314-21. https://doi.org/10.1007/s10875-007-9164-1
  33. Navarro JF, Mora C. Role of inflammation in diabetic complications. Nephrol Dial Transplant 2005;20:2601-4. https://doi.org/10.1093/ndt/gfi155
  34. Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 2010;12:365-83. https://doi.org/10.1111/j.1463-1326.2009.01176.x
  35. Monnier L, Colette C, Monnier L, Colette C. Contributions of fasting and postprandial glucose to hemoglobin A1c. Endocr Pract 2006;12 Suppl 1:42-6. https://doi.org/10.4158/EP.12.S1.42
  36. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393-403. https://doi.org/10.1056/NEJMoa012512
  37. O'Keefe JH Jr, Miles JM, Harris WH, Moe RM, McCallister BD. Improving the adverse cardiovascular prognosis of type 2 diabetes. Mayo Clin Proc 1999;74:171-80. https://doi.org/10.4065/74.2.171