DOI QR코드

DOI QR Code

Distribution and recombination of Wolbachia endosymbionts in Korean coleopteran insects

  • Jeong, Gilsang (Long Term Ecological Research Team, National Institute of Ecology) ;
  • Han, Taeman (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Park, Haechul (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Park, Soyeon (Evolutionary Ecology Research Team, National Institute of Ecology) ;
  • Noh, Pureum (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine)
  • 투고 : 2019.10.10
  • 심사 : 2019.12.05
  • 발행 : 2019.12.31

초록

Background: Wolbachia are among the most prevalent endosymbiotic bacteria and induce reproductive anomalies in various invertebrate taxa. The bacterium has huge impacts on host reproductive biology, immunity, evolution, and molecular machinery. However, broad-scale surveys of Wolbachia infections at the order scale, including the order Coleoptera, are limited. In this study, we investigated the Wolbachia infection frequency in 201 Coleopteran insects collected in Korea. Results: A total of 26 species (12.8%) belonging to 11 families harbored Wolbachia. The phylogenetic trees of based on partial 16S rRNA gene sequences and partial Wolbachia surface protein (wsp) gene sequences were largely incongruent to that of their hosts. This result confirms that Wolbachia evolved independently from their hosts, Conclusion: Phylogenetic trees suggest that complex horizontal gene transfer and recombination events occurred within and between divergent Wolbachia subgroups.

키워드

참고문헌

  1. Baldo L, Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol. 2006;72(11):7098-110. https://doi.org/10.1128/AEM.00731-06
  2. Bleidorn C, Gerth M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol. 2017;94(1):fix163.
  3. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop. 2014;132:S150-63. https://doi.org/10.1016/j.actatropica.2013.11.004
  4. Chen SJ, Lu F, Cheng JA, Jiang MX, Way MO. Identification and biological role of the endosymbionts Wolbachia in rice water weevil (Coleoptera: Curculionidae). Environl Entomol. 2012;41(3):469-77. https://doi.org/10.1603/EN11195
  5. Choi S, Shin SK, Jeong G, Yi H. Wolbachia sequence typing in butterflies using pyrosequencing. J Microbiol Biotechnol. 2015;25(9):1410-6. https://doi.org/10.4014/jmb.1503.03097
  6. Glowska E, Dragun-Damian A, Dabert M, Gerth M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol. 2015;30:140-6. https://doi.org/10.1016/j.meegid.2014.12.019
  7. Jeong G, Ahn J, Jang Y, Choe JC, Choi H. Wolbachia infection in the Loxoblemmus complex (Orthoptera: Gryllidae) in Korea. J Asia Pac Entomol. 2012;15(4):563-6. https://doi.org/10.1016/j.aspen.2012.07.002
  8. Jeong G, Kang T, Park H, Choi J, Hwang S, Kim W, Choi Y, Lee K, Park I, Sim H, Kim J. Wolbachia infection in the Korean endemic firefly, Luciola unmunsana (Coleoptera: Lampyridae). J Asia Pac Entomol. 2009a;12(1):33-6. https://doi.org/10.1016/j.aspen.2008.11.001
  9. Jeong G, Lee K, Choi J, Hwang S, Park B, Kim W, Choi Y, Park I, Kim J. Incidence of Wolbachia and Cardinium endosymbionts in the Osmia community in Korea. J Microbiol. 2009b;47(1):28. https://doi.org/10.1007/s12275-009-0198-3
  10. Kajtoch L, Kolasa M, Kubisz D, Gutowski JM, Scibior R, Mazur MA, Holecova M. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci Rep. 2019;9(1):847. https://doi.org/10.1038/s41598-018-38155-5
  11. Kajtoch L, Kotaskova N. Current state of knowledge on Wolbachia infection among Coleoptera: a systematic review. PeerJ. 2018;9(6):e4471. https://doi.org/10.7717/peerj.4471
  12. Lindsey AR, Bordenstein SR, Newton IL, Rasgon JL. Wolbachia pipientis should not be split into multiple species: A response to Ramirez-Puebla et al.,"Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii','Candidatus Wolbachia onchocercicola','Candidatus Wolbachia blaxteri','Candidatus Wolbachia brugii','Candidatus Wolbachia taylori','Candidatus Wolbachia collembolicola'and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups". Syst Appl Microbiol. 2016;39(3):220. https://doi.org/10.1016/j.syapm.2016.03.001
  13. Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many Wolbachia supergroups exist? Mol Biol Evol. 2002;19(3):341-6. https://doi.org/10.1093/oxfordjournals.molbev.a004087
  14. Moon S, Lee S. Diseases and insect pests of woody plants. Nat Ecol. 2015;Seoul:879.
  15. Muller J, Muller K. TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes. 2004;4(4):786-8. https://doi.org/10.1111/j.1471-8286.2004.00813.x
  16. O'Neill SL. Wolbachia mosquito control: Tested. Science. 2016;352(6285):526. https://doi.org/10.1126/science.352.6285.526-a
  17. O'Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I, Dong Y, Kenny N, Paton CJ, Ritchie SA, Brown-Kenyon J. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2018;1:2. https://doi.org/10.12688/gatesopenres.12759.2
  18. Park CH, Lim H, Kim H, Lee WG, Roh JY, Park MY, Shin EH. High prevalence of Wolbachia infection in Korean populations of Aedes albopictus (Diptera: Culicidae). J Asia Pac Entomol. 2016;19(1):191-4. https://doi.org/10.1016/j.aspen.2015.12.014
  19. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817-8. https://doi.org/10.1093/bioinformatics/14.9.817
  20. Rodriguero MS, Confalonieri VA, Guedes JV, Lanteri AA. Wolbachia infection in the tribe Naupactini (Coleoptera, Curculionidae): association between thelytokous parthenogenesis and infection status. Insect Mol Biol. 2010;19(5):631-40. https://doi.org/10.1111/j.1365-2583.2010.01018.x
  21. Rostami E, Madadi H, Abbasipour H, Sivaramakrishnan S. Wolbachia-mediated reproductive alterations in arthropod hosts and its use for biocontrol program. Korean J Appl Entomol. 2016;55(2):177-88. https://doi.org/10.5656/KSAE.2016.02.1.049
  22. Son Y, Luckhart S, Zhang X, Lieber MJ, Lewis EE. Effects and implications of antibiotic treatment on Wolbachia-infected vine weevil (Coleoptera: Curculionidae). Agr Forest Entomol. 2008;10(2):147-55. https://doi.org/10.1111/j.1461-9563.2008.00369.x
  23. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sunderland: Sinauer Associates; 2002. ver. 4.10b.
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. https://doi.org/10.1093/molbev/mst197
  25. Werren JH, Windsor D, Guo LR. Distribution of Wolbachia among neotropical arthropods. P Roy Soc Lond B Bio. 1995;262(1364):197-204. https://doi.org/10.1098/rspb.1995.0196
  26. Werren JH, Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium? P Roy Soc Lond B Bio. 2000;267(1450):1277-85. https://doi.org/10.1098/rspb.2000.1139
  27. Xi Z, Khoo CC, Dobson SL. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. P Roy Soc Lond B Bio. 2006;273(1592):1317-22.
  28. Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One. 2012;7(6):e38544. https://doi.org/10.1371/journal.pone.0038544