DOI QR코드

DOI QR Code

개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method

  • 박병관 (과학기술연합대학원대학교 건설환경공학과) ;
  • 최순욱 (한국건설기술연구원 인프라안전연구본부) ;
  • 이철호 (한국건설기술연구원 인프라안전연구본부) ;
  • 강태호 (한국건설기술연구원 인프라안전연구본부) ;
  • 장수호 (한국건설기술연구원 건설산업진흥본부)
  • Park, Byungkwan (Civil & Environmental Engineering, University of Science and Technology) ;
  • Choi, Soon-Wook (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Chulho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Tae-Ho (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chang, Soo-Ho (Construction Industry Promotion Department, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2019.11.11
  • 심사 : 2019.11.27
  • 발행 : 2019.12.31

초록

경제적인 TBM 시공을 위해서는 현장 조건에 맞는 최적의 TBM 선정과 함께, 선정된 TBM의 굴착 성능을 예측하는 것이 매우 중요하다. 본 연구에서는 개별요소법 (Discrete Element Method, DEM) 기법에 근거한 입자 역학 전용 해석 상용 소프트웨어를 사용하여 경사각에 따른 토압식 쉴드TBM의 버럭 배토 장비인 스크루 컨베이어의 각도에 따른 성능을 종합적으로 평가하였다. 굴착 토사를 모사하기 위해 점성 특성을 갖는 입자들을 사용하였으며, 스크루 컨베이어의 경사각에 따른 성능을 평가하기 위해 11가지 스크루 컨베이어 모델을 적용하였다. 해석에는 네 가지 스크루 컨베이어 회전 속도 조건이 적용되었으며 스크루 컨베이어의 성능을 평가하기 위한 지표로 토크, 소요 동력 이외에도 배토를 위해 추가로 소요되는 작업량 및 단위 시간당 배토량을 선정하였다. 마지막으로 평가된 네 가지 성능 지표를 종합하여 주어진 해석 조건에서의 최적의 스크루 컨베이어 경사각을 선정하였으며, 이는 실제 TBM 현장에서 많이 사용되는 스크루 컨베이어 경사인 20.0°~30.0° 범위와도 부합하는 것으로 파악되었다.

For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.

키워드

참고문헌

  1. Al-Hashemi, H. M. B. and Al-Amoudi, O. S. B., 2018, A review on the angle of repose of granular materials, Powder Technology, Vol. 330, pp. 397-417. https://doi.org/10.1016/j.powtec.2018.02.003
  2. EDEM., 2019, EDEM 2019 Documentation, DEM solutions Ltd, Edinburgh.
  3. Jones, R., 2003, From single particle AFM studies of adhesion and friction to bulk flow: forging the links, Granular Matter, Vol. 4, No. 4, pp. 191-204. https://doi.org/10.1007/s10035-002-0122-6
  4. Jones, R., Pollock, H. M., Geldart, D. and Verlinden-Luts, A., 2004, Frictional forces between cohesive powder particles studied by AFM, Ultramicroscopy, Vol. 100, No. 1-2, pp. 59-78. https://doi.org/10.1016/j.ultramic.2004.01.009
  5. Jung, H. S., Choi, J. M., Chun, B. S., Park, J. S. and Lee, Y. J., 2011, Causes of reduction in shield TBM performance-A case study in Seoul. Tunnelling and Underground Space Technology, Vol. 26, No. 3, pp. 453-461. https://doi.org/10.1016/j.tust.2011.01.001
  6. KICT., 2015, Development of optimized TBM cutterhead design method and high-performance disc cutter, Publication No. ISBN 979-11-954377-2-6. Korea Agency for Infrastructure Technology Advancement, Gyeonggi-do.
  7. Kim, S. H., Kim, J. D. and Park, I. J., 2011, An experimental study on screw conveyor system of EPB shield TBM, Journal of Korean Tunnelling and Underground Space Association, Vol. 13. No. 6, pp. 519-530. https://doi.org/10.9711/KTAJ.2011.13.6.519
  8. Kim, J. y., Jeon, B. G., Chae, J. G., Lee, M. W., Kim, S. H. and Kitahara, Y., 2015, Shield TBM excavation method, Trans, Seoul: CIR publishing.
  9. KWS manufacturing company, 2019, screw conveyor engineering guide, KWS manufacturing company Ltd., Burleson.
  10. Lee, C., Chang, S. H., Choi, S. W., Park, B., Kang, T. H. and Sim, J. K., 2017a, Preliminary study on a spoke-type EPB shield TBM by discrete element method, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 6, pp. 1029-1044. https://doi.org/10.9711/KTAJ.2017.19.6.1029
  11. Lee, C., Chang, S. H., Choi, S. W., Park, B., Kang, T. H. and Sim, J. K., 2017b, Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method, Journal of the Korean Geosynthetics Society, Vol. 16, No. 4, pp. 163-176. https://doi.org/10.12814/JKGSS.2017.16.4.163
  12. Lee, G. J., Kwon, T. H. and Kim, H., 2019, DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock, Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 1, pp. 127-136. https://doi.org/10.9711/KTAJ.2019.21.1.127
  13. Merritt, A. S. and Mair, R. J., 2006, Mechanics of tunnelling machine screw conveyors: model tests, Geotechnique, Vol. 56, No. 9, pp. 605-615. https://doi.org/10.1680/geot.2006.56.9.605
  14. Mok, H. S., Lee, J. S. and Cho, J. R., 2004, A Study on Deciding Priority of Optimal Design Guide for Disassembly Process. IE interfaces, Vol. 17, No. 4, pp. 414-425.
  15. Mok, H. S., Han, C. H., Jeon, C. S. and Song, M. J., 2008, Design Principle for Disassemblability of Products. Transactions of the Korean Society of Automotive Engineers, Vol. 16, No. 6, pp. 48-57.
  16. Oh, T. S., Kim, S. H., Kim, W. K., Lee, H. Y. and Shin, M. H., 2014, Model test on operation efficiency in the screw conveyor of shiled TBM in soft ground, Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 203-211. https://doi.org/10.9711/KTAJ.2014.16.2.203
  17. Owen, P. J. and Cleary, P. W., 2009, Prediction of screw conveyor performance using the Discrete Element Method (DEM), Powder Technology, Vol. 193, No. 3, pp. 274-288. https://doi.org/10.1016/j.powtec.2009.03.012
  18. Peila, D., Oggeri, C. and Vinai, R., 2007, Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1622)
  19. Talmon, A. M. and Bezuijen, A., 2002, Muck discharge by the screw conveyor of an EPB Tunnel Boring Machine, 3rd Int. In Symp. on Geotch. Aspects of Underground Construction in Soft Ground, IS-Toulouse.
  20. Thakur, S. C., Morrissey, J. P., Sun, J., Chen, J. F. and Ooi, J. Y., 2014, Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model, Granular Matter, Vol. 16, No. 3, pp. 383-400. https://doi.org/10.1007/s10035-014-0506-4