DOI QR코드

DOI QR Code

An evaluation of evaporation estimates according to solar radiation models

일사량 산정 모델에 따른 증발량 분석

  • Rim, Chang-Soo (Department of Civil Engineering, Kyonggi University)
  • 임창수 (경기대학교 공과대학 토목공학과)
  • Received : 2019.08.28
  • Accepted : 2019.11.22
  • Published : 2019.12.31

Abstract

To evaluate the utilization suitability of solar radiation models, estimated solar radiation from 13 solar radiation models were verified by comparing with measured solar radiation at 5 study stations in South Korea. Furthermore, for the evaluation of evaporation estimates according to solar radiation models, 5 different evaporation estimation equations based on Penman's combination approach were applied, and evaporation estimates were compared with pan evaporation. Some solar radiation models require only meteorological data; however, some other models require not only meteorological data but also geographical data such as elevation. The study results showed that solar radiation model based on the ratio of the duration of sunshine to the possible duration of sunshine, maximum temperature, and minimum temperature provided the estimated solar radiation that most closely match measured solar radiation. Accuracy of estimated solar radiation also greatly improved when Angstrőm-Prescott model coefficients are adjusted to the study stations. Therefore, when choosing the solar radiation model for evaporation estimation, both data availability and model capability should be considered simultaneously. When applying measured solar radiation for estimating evaporation, evaporation estimates from Penman, FAO Penman-Monteith, and KNF equations are most close to pan evaporation rates in Jeonju and Jeju, Seoul and Mokpo, and Daejeon respectively.

본 연구에서는 13개의 일사량 산정모델들로부터 산정된 일사량을 우리나라 5개 기상관측지점에서 측정된 일사량자료와 비교함으로서 이들 일사량 산정모델들의 활용 적합성을 평가하였다. 또한 일사량 산정모델이 증발에 미치는 영향을 파악하기 위해서 일사량자료를 필요로 하는 Penman 조합식에 근거한 5개 증발량 산정식들을 적용하여 증발량을 산정하고 증발접시 증발량과 비교 분석하였다. 일부 일사량 산정모델은 기상자료만을 필요로 하며, 반면에 다른 일부 모델은 기상자료뿐만 아니라 고도와 같은 지형 자료를 필요로 한다. 연구결과에 의하면 일조시간과 가조시간의 비(일조시간/가조시간)뿐만 아니라 최고기온과 최저기온을 동시에 고려하여 일사량을 산정하는 모델이 관측 일사량과 가장 근사한 결과를 보여주었다. 또한 일조시간과 가조시간의 비만을 이용한 Angstrőm-Prescott모델의 계수값을 보정하는 경우 역시 일사량 산정의 정확도를 크게 개선시키는 것으로 나타났다. 따라서 증발량 산정을 위해 일사량모델을 선정하는 경우 입력자료의 존재여부 뿐만 아니라 적절한 일사량을 산정하는 모델형식을 동시에 고려하는 것이 필요하다. 관측된 일사량을 적용하여 증발량을 산정하는 경우에 Penman식은 전주, 제주지역에서 증발접시 증발량과 가장 근사한 것으로 나타났고, FAO PM식은 서울과 목포지역에서 그리고 KNF식은 대전지역에서 증발접시 증발량과 가장 근사한 것으로 나타났다.

Keywords

References

  1. Abdalla, Y.A.G., and Feregh, G.M. (1988). "Contribution to the study of solar radiation." Energy Conversion and Management, Vol. 28, No. 1, pp. 63-67. https://doi.org/10.1016/0196-8904(88)90013-1
  2. Ahmad, F., and Ulfat, I. (2004). "Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan." Turkish Journal of Physics, Vol. 28, pp. 301-307.
  3. Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  4. Almorox, J., and Hontoria, C. (2004). "Global solar radiation estimation using sunshine duration in Spain." Energy Conversion and Management, Vol. 45, No. 9-10, pp. 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022
  5. Angstrom, A. (1924). "Solar and terrestrial radiation." Quarterly Journal of the Royal Meteorological Society, Vol. 50, No. 210, pp. 121-125. https://doi.org/10.1002/qj.49705021008
  6. Assouline, S., Li, D., Tyler, S., Tanny, J., Cohen, S., Bou-Zeid, E., Parlange, M., and Katul, G.G. (2016). "On the variability of the Priestley-Taylor coefficient over water bodies." Water Resources Research, Vol. 52, No. 1, pp. 150-163. https://doi.org/10.1002/2015WR017504
  7. Augustine, C., and Nnabuchi, M.N. (2009). "Correlation between sunshine hours and global solar radiation in Warri, Nigeria." The Pacific Journal of Science and Technology, Vol. 10, No. 2, pp. 574-579.
  8. Bahel, V., Bakhsh, H., and Srinivasan, R. (1987). "A correlation for estimation of global solar radiation." Energy, Vol. 12, No. 2, pp. 131-135. https://doi.org/10.1016/0360-5442(87)90117-4
  9. Benson, R.B., Paris, M.V., Sherry, J.E., and Justus, C.G. (1984). "Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements." Solar Energy, Vol. 32, No. 4, pp. 523-535. https://doi.org/10.1016/0038-092X(84)90267-6
  10. Boisvert, J.B., Hayhoe, H.N., and Dube, P.A. (1990). "Improving the estimation of global solar radiation across Canada." Agricultural and Forest Meteorology, Vol. 52, No. 3-4, pp. 275-286. https://doi.org/10.1016/0168-1923(90)90086-L
  11. Bristow, K.L., and Campbell, G.S. (1984). "On the relationship between incoming solar radiation and daily maximum and minimum temperature." Agricultural and Forest Meteorology, Vol. 31, No. 2, pp. 159-166. https://doi.org/10.1016/0168-1923(84)90017-0
  12. Chen, R., Ersi, K., Yang, J., Lu, S., and Zhao, W. (2004). "Validation of five global radiation models with measured daily data in China." Energy Conversion Management, Vol. 45, No. 11-12, pp. 1759-1769. https://doi.org/10.1016/j.enconman.2003.09.019
  13. Choi, M.H., Yun, J.I., Chung, U.R., and Moon, K.H. (2010). "Performance of angstrom-prescott coefficients under different time scales in estimating daily solar radiation in South Korea." Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 4, pp. 232-237. https://doi.org/10.5532/KJAFM.2010.12.4.232
  14. De Bruin, H.A.R., and Keijman, J.Q. (1979). "The Priestley-Taylor evaporation model applied to a large, shallow lake in the Netherlands." Journal of Applied Meteorology, Vol. 18, No. 7, pp. 898-903. https://doi.org/10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
  15. Djaman, K., O'Neill, M., Diop, L., Bodian, A., Allen, S., Koudahe, K., and Lombard, K. (2019). "Evaluation of the penmanmonteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate." Theoretical and Applied Climatology, Vol. 137, No. 1-2, pp. 729-743. https://doi.org/10.1007/s00704-018-2624-0
  16. Duffie, J.A., and Beckman, W.A. (1991). Solar engineering of thermal processes. Wiley, New York.
  17. Elagib, N.A., Babiker, S.F., and Alvi, S.H. (1998). "New empirical models for global solar radiation over Bahrain." Energy Conversion and Management, Vol. 39, No. 8, pp. 827-835. https://doi.org/10.1016/S0196-8904(97)00035-6
  18. Ertekin, C., and Yaldiz, O. (2000). "Comparison of some existing models for estimating global solar radiation for Antalya (Turkey)." Energy Conversion and Management, Vol. 41, No. 4, pp. 311-330. https://doi.org/10.1016/S0196-8904(99)00127-2
  19. Ferguson, H.L., and den Hartog, G. (1975). "Meteorological studies of evaporation at Perch lake, Ontario". Hydrological Studies on a Small Basin on the Canadian Shield-Evaporation Studies, P.J. Barry, Ed. AECL Chalk River Nuclear Laboratories, pp. 417-448.
  20. Gopinathan, K.K. (1988). "A simple method for predicting global solar radiation on horizontal surface." Solar and Wind Technology, Vol. 5, No. 5, p. 581. https://doi.org/10.1016/0741-983X(88)90050-1
  21. Irmak, S., and Haman, D.Z. (2003). "Evaluation of five methods for estimating class A pan evaporation in a humid climate." Hort-Technology, Vol. 13, No. 3, pp. 500-508. https://doi.org/10.21273/HORTTECH.13.3.0500
  22. Jauregui, E., Klaus, D., and Lauer, W. (1978). On the estimation of potential evaporation in central Mexico. Colloquium Geographicum, Band 13, pp. 163-190. Dummlers Verlag, Bonn.
  23. Koberg, G.E. (1964). Methods to compute long-wave radiation from the atmosphere and reflected solar radiation from a water surface. Professional Paper 272-F, US Geological Survey, pp. 107-136.
  24. Kohler, M.A., Nordenson, T.J., and Fox, W.E. (1955). Evaporation from pans and lakes. U.S. Dept. Commerce Research. Paper. No. 38.
  25. Lindsey, S.D., and Farnsworth, R.K. (1997). "Source of solar radiation estimates and their effect on daily potential evaporation for use in streamflow modeling." Journal of Hydrology, Vol. 201, No. 1-4, pp. 348-366. https://doi.org/10.1016/S0022-1694(97)00046-2
  26. Liu, X., Mei, X., Li, Y., Zhang, Y., Wang, Q., Jensen, J.R., and Porter, J.R. (2009). "Calibration of the angstrom-prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin." Agricultural and Forest Meteorology, Vol. 149, No. 3-4, pp. 697-710. https://doi.org/10.1016/j.agrformet.2008.10.027
  27. Mukammal, E.I., and Neumann, H.H. (1977). "Application of the Priestley-Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and class A pan". Boundary-Lay. Met., Vol. 14, pp. 243-256. https://doi.org/10.1007/BF00121976
  28. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, Part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  29. Ogelman, H., Ecevit, A., and Tasdemiroglu, E. (1984). "A new method for estimating solar radiation from bright sunshine data." Solar Energy, Vol. 33, No. 6, pp. 619-625. https://doi.org/10.1016/0038-092X(84)90018-5
  30. Page, J.K. (1961). "The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from sunshine records for latitudes $40^{\circ}N-40^{\circ}S$." In: Proceedings of UN Conference on New Sources of Energy, Paper No. 598, Vol. 4. pp. 378-390.
  31. Penman, H.L. (1948). "Natural evaporation from open water, bare soil, and grass." Proceefings of the Royal Society A, London, Vol. A193, No. 1032, pp. 120-146.
  32. Pochop, L., Borrelli, J., and Hasfurther, V. (1984). Design characteristics for evaporation ponds in wyoming. Wyoming Water Research Center Final Report, Wyoming.
  33. Prescott, J.A. (1940). "Evaporation from a water surface in relation to solar radiation." Transactions of the Royal Society of South Australia, Vol. 641, pp. 114-125.
  34. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, No. 2, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  35. Rietveld, M.R. (1978). "A new method to estimate the regression coefficients in the formula relating radiation to sunshine." Agricultural Meteorology, Vol. 19, No. 2-3, pp. 243-252. https://doi.org/10.1016/0002-1571(78)90014-6
  36. Rim, C.S. (2017). "Estimation of small pan evaporation using temperature data." Journal of Korea Water Resources Association, Vol. 50, No. 1, pp. 37-53. https://doi.org/10.3741/JKWRA.2017.50.1.37
  37. Srivastava, R.C., and Pandey, H. (2013). Estimating Angstrom-Prescott coefficients for India and developing a correlation between sunshine hours and global solar radiation for India. ISRN Renewable Energy, 2013.
  38. Stewart, R.B., and Rouse, W.R. (1976). "A simple method for determining the evaporation from shallow lakes and ponds." Water Resources Research, Vol. 12, pp. 623-628. https://doi.org/10.1029/WR012i004p00623
  39. Stewart, R.B., and Rouse, W.R. (1977). "Substantiation of the priestley-taylor parameters ${\alpha}$=1.26 for potential evaporation in high latitudes." Journal of Appled Meteorology, Vol. 16, pp. 649-650. https://doi.org/10.1175/1520-0450(1977)016<0649:SOTPAT>2.0.CO;2
  40. Tiris, M., Tiris, C., and Erdalli, Y. (1997). "Water heating systems by solar energy (in Turkish)." Marmara Research Centre, Institute of Energy Syatems and Environmental Research, NATO TU-COATING, Gebze, Kocaeli, Turkey, p. 151.
  41. Valiantzas, J.D. (2006). "Simplified versions for the Penman evaporation equation using routine weather data." Journal of Hydrology, Vol. 331, No. 3-4, pp. 690-702. https://doi.org/10.1016/j.jhydrol.2006.06.012
  42. Zabara, K. (1986). "Estimation of the global solar radiation in Greece." Solar and Wind Technology, Vol. 3, No. 4, pp. 267-272. https://doi.org/10.1016/0741-983X(86)90005-6