Physicochemical Hydrodynamics Laboratory

한양대학교 Physicochemical Hydrodynamics 연구실

  • 곽노균 (한양대학교 기계공학과) ;
  • 강수현 (한양대학교 기계공학과) ;
  • 김성훈 (한양대학교 기계공학과) ;
  • 김상하 (한양대학교 기계공학과) ;
  • 박수동 (한양대학교 기계공학과) ;
  • 김동호 (한양대학교 기계공학과) ;
  • 김준현 (한양대학교 기계공학과) ;
  • 이한솔 (한양대학교 기계공학과) ;
  • 최진아 (한양대학교 기계공학과) ;
  • 김민찬 (한양대학교 기계공학과) ;
  • 임승빈 (한양대학교 기계공학과) ;
  • 김민규 (한양대학교 기계공학과) ;
  • 유연욱 (한양대학교 기계공학과) ;
  • 임준범 (한양대학교 기계공학과)
  • Published : 2019.12.31

Abstract

Keywords

References

  1. Probstein, R. F., Physicochemical Hydrodynamics: An Introduction. 2nd ed.; Wiley-Interscience: New York, 2003.
  2. Rubinstein, I.; Zaltzman, B., Electro-osmotically induced convection at a permselective membrane. Phys Rev E 2000, 62 (2), 2238-2251. https://doi.org/10.1103/PhysRevE.62.2238
  3. Kwak, R.; Pham, V. S.; Han, J. Y., Sheltering the perturbed vortical layer of electroconvection under shear flow. J Fluid Mech 2017, 813, 799-823. https://doi.org/10.1017/jfm.2016.870
  4. Kwak, R.; Pham, V. S.; Lim, K. M.; Han, J. Y., Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices. Phys Rev Lett 2013, 110 (11).
  5. Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264 (3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069
  6. Nikonenko, V. V.; Kovalenko, A. V.; Urtenov, M. K.; Pismenskaya, N. D.; Han, J.; Sistat, P.; Pourcelly, G., Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 2014, 342, 85-106. https://doi.org/10.1016/j.desal.2014.01.008
  7. Kwak, R.; Guan, G. F.; Peng, W. K.; Han, J. Y., Microscale electrodialysis: Concentration profiling and vortex visualization. Desalination 2013, 308, 138-146. https://doi.org/10.1016/j.desal.2012.07.017
  8. Kwak, R.; Pham, V. S.; Kim, B.; Chen, L.; Han, J., Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination. Sci Rep-Uk 2016, 6.
  9. Chandrasekhar, S., Hydrodynamic and hydromagnetic stability. Courier Corporation: 2013.
  10. Rubinstein, S. M.; Manukyan, G.; Staicu, A.; Rubinstein, I.; Zaltzman, B.; Lammertink, R. G. H.; Mugele, F.; Wessling, M., Direct Observation of a Nonequilibrium Electro-Osmotic Instability. Phys Rev Lett 2008, 101 (23).
  11. Schiffbauer, J.; Park, S.; Yossifon, G., Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices. Phys Rev Lett 2013, 110 (20).
  12. Kwak, R.; Pham, V. S.; Han, J., Sheltering the perturbed vortical layer of electroconvection under shear flow. J Fluid Mech 2017, 813, 799-823. https://doi.org/10.1017/jfm.2016.870
  13. Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F. J., Comparative study of brine management technologies for desalination plants. Desalination 2014, 336, 32-49. https://doi.org/10.1016/j.desal.2013.12.038
  14. Maathuis, F. J. M.; Ahmad, I.; Patishtan, J., Regulation of Na+ fluxes in plants. Front Plant Sci 2014, 5.
  15. Lin, C. C.; Hsu, J. L.; Lee, G. B., Sample preconcentration in microfluidic devices. Microfluid Nanofluid 2011, 10 (3), 481-511. https://doi.org/10.1007/s10404-010-0661-9
  16. Kim, S. J.; Song, Y. A.; Han, J., Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev 2010, 39 (3), 912-922. https://doi.org/10.1039/b822556g
  17. Kwak, R.; Kang, J. Y.; Kim, T. S., Spatiotemporally Defining Biomolecule Preconcentration by Merging Ion Concentration Polarization. Anal Chem 2016, 88 (1), 988-996. https://doi.org/10.1021/acs.analchem.5b03855
  18. Hong, S.; Kwak, R.; Kim, W., Paper-Based Flow Fractionation System Applicable to Preconcentration and Field-Flow Separation. Anal Chem 2016, 88 (3), 1682-1687. https://doi.org/10.1021/acs.analchem.5b03682
  19. Han, S. I.; Hwang, K. S.; Kwak, R.; Lee, J. H., Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization. Lab Chip 2016, 16 (12), 2219-2227. https://doi.org/10.1039/C6LC00499G