DOI QR코드

DOI QR Code

FMI기반 co-simulation에서 step size control을 위한 Markov chain을 사용한 예측 방법

A Prediction Method using Markov chain for Step Size Control in FMI based Co-simulation

  • Hong, Seokjoon (Dept. of Computer Software, Hanyang University) ;
  • Lim, Ducsun (Dept. of Computer Software, Hanyang University) ;
  • Kim, Wontae (Dept. of Computer Science and Engineering, Koreatech University) ;
  • Joe, Inwhee (Dept. of Computer Software, Hanyang University)
  • 투고 : 2019.12.10
  • 심사 : 2019.12.30
  • 발행 : 2019.12.31

초록

FMI를 기반으로 하는 co-simulation의 마스터 알고리즘(MA)에서 시뮬레이션 결과의 정확도를 높이는 방법으로 zero crossing 포인트를 찾기 위한 Bisectional algorithm을 사용할 수 있다. 그러나 이 알고리즘은 많은 Rollback을 야기한다. 따라서 본 논문에서는 제안하는 MA는 Bisection algorithm을 통해 zero crossing 포인트를 검출하면서도 반복되는 구간 그래프를 분석하여 그 값을 Markov chain을 적용하여 다음 구간을 예측하여 이를 step size에 적용한다. 시뮬레이션에서 실제 Rollback이 발생했을 때 그래프 형태별로 변화되는 step size를 배열로 저장하고, 이룰 다음 예측 구간에 적용함으로서 Rollback을 최소화하는 알고리즘을 제안한다. 시뮬레이션 결과를 통해 제안하는 알고리즘이 기존 알고리즘에 비해 최대 20% 이상의 시뮬레이션 시간이 감소되는 것을 확인하였다.

In Functional Mockup Interface(FMI)-based co-simulation, a bisectional algorithm can be used to find the zerocrossing point as a way to improve the accuracy of the simulation results. In this paper, the proposed master algorithm(MA) analyzes the repeated interval graph and predicts the next interval by applying the Markov Chain to the step size. In the simulation, we propose an algorithm to minimize the rollback by storing the step size that changes according to the graph type as an array and applying it to the next prediction interval when the rollback occurs in the simulation. Simulation results show that the proposed algorithm reduces the simulation time by more than 20% compared to the existing algorithm.

키워드

참고문헌

  1. J. Eidson E.A. Lee S. Matic S. A. Seshia J. Zou "Distributed Real-Time Software for Cyber-Physical Systems," Proceedings of the IEEE (special issue on CPS) pp.45-59, 2012. DOI: 10.1109/JPROC.2011.2161237
  2. X. Guan B. Yang C. Chen W. Dai Y. Wang "A comprehensive overview of cyber-physical systems: from perspective of feedback system," IEEE/CAA Journal of Automatica Sinica vol.3 no.1, pp.1-14, 2016. DOI: 10.1109/JAS.2016.7373757
  3. A Sharma, G Rathee, R Kumar, H Saini, V Vijaykumar, Y Nam, N Chilamkurti. "A Secure, Energy-and SLA-Efficient (SESE) E-Healthcare Framework for Quickest Data Transmission Using Cyber-Physical System," Sensors, Vol.19, No.9, 2019. DOI: 10.3390/s19092119
  4. D. Roy L. Zhang W. Chang S. K. Mitter S. Chakraborty "Semantics-preserving cosynthesis of cyber-physical systems," Proceedings of the IEEE, vol.106, no.1, pp.171-200, 2018. DOI: 10.1109/JPROC.2017.2779456
  5. Z. Yu L. Zhou Z. Ma M. A. El-Meligy "Trustworthiness modeling and analysis of cyberphysical manufacturing systems," IEEE Access, vol.5, pp.26076-26085, 2017. DOI: 10.1109.ACCESS.2017.2777438 https://doi.org/10.1109/ACCESS.2017.2777438
  6. W. Li X. Zhu J. Ju "Hierarchical braking torque control of in-wheel-motor-driven electric vehicles over CAN," IEEE Access, vol.6, pp. 65189-65198, 2018. DOI: 10.1109/ACCESS.2018.2877960
  7. W. Yu Y. Xue J. Lou et al. "An UHV grid security and stability defense system: considering the risk of power system communication," IEEE Trans. Smart Grid, vol.7, no.1, pp.491-500, 2016. DOI: 10.1109/TSC.2015.2392100
  8. M. B. Kamal G. J. Mendis J. Wei "Intelligent soft computing-based security control for energy management architecture of hybrid emergency power system for more-electric aircrafts," IEEE J. Sel. Topics Signal Process, vol.12, no.4, pp.806-816, 2018. DOI: 10.1109/JSTSP.2018.2848624
  9. Functional mock-up interface for model exchange and co-simulation, Version 2.0, Information Tech for European Advancement, Tech. Rep., Modelisar, 2012. http://www.fmi-Standard.org/downloads/
  10. T. Bui S. Chaudhuri T. Leighton M. Sipser "Graph Bisection Algorithms with Good Average Case Behavior," Proc. 25th Int'l Symp. Foundations of Computer Science, pp.181-192, 1984. DOI: 10.1007/BF02579448
  11. D. Broman C. Brooks L. Greenberg E. A. Lee M. Masin S. Tripakis M. Wetter "Determinate Composition of FMUs for Co-Simulation," Proceedings of the International Conference on Embedded Software (EMSOFT 2013), 2013. DOI: 10.1109/EMSOFT.2013.6658580
  12. F. Cremona M. Lohstroh D. Broman M. D. Natale E. A. Lee S. Tripakis "Step revision in hybrid co-simulation with FMI," 2016 ACM/ IEEE International Conference on Formal Methods and Models for System Design MEMOCODE 2016, pp.173-183, 2016. DOI: 10.1109/MEMCOD.2016.7797762
  13. DP Bertsekas, JN Tsitsiklis, Introduction to probability, Athena Scientific, 2002.
  14. I. Jeon K. Lee "A dynamic Markov chain prediction model for delay-tolerant networks," International Journal of Distributed Sensor Networks, vol.12, 2016. DOI: 10.1177/1550147716666662
  15. E. Wang, Y. Yang, B. Jia, "The DTN routing algorithm based on Markov meeting time span prediction model," International Journal of Distributed Sensor Networks, vol.9 2013. DOI: 10.1155/2013/736796
  16. "QTronic. FMU SDK (FMU Software DevelopmentKit)," http://www.qtronic.de/de/fmusdk.html