DOI QR코드

DOI QR Code

A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device

기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템

  • Hwang, Tae-Hoon (Dept. of Computer Engineering, Seokyeong University) ;
  • Kim, Jin-Heon (Dept. of Computer Engineering, Seokyeong University)
  • Received : 2019.12.09
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

Recently, a system that supports efficient interaction, a human machine interface (HMI), has become a hot topic. In this paper, we propose a new real time low-cost hand gesture control system as one of vehicle interaction methods. In order to reduce computation time, depth information was acquired using a time-of-flight (TOF) camera because it requires a large amount of computation when detecting hand regions using an RGB camera. In addition, fourier descriptor were used to reduce the learning model. Since the Fourier descriptor uses only a small number of points in the whole image, it is possible to miniaturize the learning model. In order to evaluate the performance of the proposed technique, we compared the speeds of desktop and raspberry pi2. Experimental results show that performance difference between small embedded and desktop is not significant. In the gesture recognition experiment, the recognition rate of 95.16% is confirmed.

최근에, 효율적인 상호작용을 지원하는 시스템 인 휴먼 머신 인터페이스(HMI)가 인기를 끌고있다. 본 논문에서는 차량 상호작용방법 중 하나로 새로운 실시간 저비용 손동작 제어 시스템을 제안한다. 계산 시간을 줄이기 위해 RGB 카메라를 사용하여 손 영역을 감지할 때 많은 계산이 필요하므로 TOF (Time-of-Flight) 카메라를 사용하여 깊이 정보를 취득한다. 또한, 푸리에 기술자를 사용하여 학습 모델을 줄였다. 푸리에 디스크립터는 전체 이미지에서 적은 수의 포인트만 사용하므로 학습 모델을 소형화 할 수 있다. 제안 된 기법의 성능을 평가하기 위해 데스크탑과 라즈베리 pi 2의 속도를 비교했다. 실험 결과에 따르면 소형 임베디드와 데스크탑의 성능 차이는 크지 않다. 제스처 인식 실험에서 95.16 %의 인식률이 확인되었다.

Keywords

References

  1. T Dukic, L Hanson, K Holmqvist and C Wartenberg "Effect of button location on driver's visual behaviour and safety perception", Journal Ergonomics, vol.48, no.4, pp.399-410, 2005. DOI: 10.1080/00140130400029092
  2. M. Zobl, M. Geiger, B. Schuller, M. Lang and G. Rigoll, "A real-time system for hand gesture controlled operation of in-car devices," Proceedings of IEEE Multimedia and Expo2003, Vol.3, 2003. DOI: 10.1109/ICME.2003.1221368
  3. B. yu, S. Y. Park, Y. S. Kim, I. G. Jeong, S. Y. Ok, E. J. Lee, "Hand Tracking and Hand Recognition for Human Computer Interaction," Journal of Korea Multimedia Society, Vol.14 no.2, pp.182-193, 2011. DOI: 10.5565/rev/elcvia.109
  4. G. Khurana, G. Joshi and J. Kaur, "Static hand gestures recognition system using shape based features," Recent Advances in Engineering and Computational Sciences, pp.1-4, 2014. DOI: 10.1109/RAECS.2014.6799633
  5. S. C. Agarwal, A. S. Jalal and C. Bhatnagar, "Recognition of Indian Sign Language using feature fusion," 4th International Conference on Intelligent Human Computer Interaction, pp.1-5, 2012. DOI: 10.1109/IHCI.2012.6481841
  6. H. M. Gamal, H. M. Abdul-Kader, and E. Sallam, "Hand gesture recognition using fourier descriptors," 8th International Conference on Computer Engineering & Systems, pp.274-279, 2013. DOI: 10.1109/ICCES.2013.6707218
  7. P. Shukla, A. Garg, K. Sharma and A. Mittal, "A DTW and Fourier Descriptor based approach for Indian Sign Language recognition," 3th International Conference on Image Information Processing, pp.113-118, 2015. DOI: 10.1109/ICIIP.2015.7414750
  8. T. McElroy. E. Wilson. and G. Anspach, "Fourier descriproe and neural networks far shape classification," International Conference on Acoustics, Speech, and Signal Processing, vol.5, pp.3435-3438, 1995.
  9. K. S. Park, D. H. Lee, Y. T. Park, "Hand Gesture Recognition Using Depth Information and Visual Image," Journal of Korea Institute of Information Technology, Vol.11, No.7, pp.57-65, 2013.
  10. M. K. Kyu, K. H. Bae, S. H. Cho and T. C. Kim, "Gesture-dependent depth data extraction for low resolution Time-of-Flight camera," International Conference on Consumer Electronics, pp.183-184, 2012. DOI: 10.1109/ICCE-Berlin.2012.6336464
  11. E. Kollorz, J. Penne, J. Hornegger and A. Barke, "Gesture recognition with a Time-Of-Flight camera," International Journal of Intelligent Systems Technologies and Applications, Vol.5, pp.334-343, 2008. https://doi.org/10.1504/IJISTA.2008.021296
  12. C. H. Wu and C. H. Lin, "Depth-based hand gesture recognition for home appliance control," IEEE 17th International Symposium on Consumer Electronics, pp.279-280, 2013. DOI: 10.1109/ISCE.2013.6570227
  13. Y. Li, "Hand gesture recognition using kinect," IEEE 3rd International Conference on Software Engineering and Service Science, pp.196-199, 2012. DOI: 10.1109/ICSESS.2012.6269439
  14. F. Dominio, M. Donadeo, G. Marin, P. Zanuttigh and G. M. Cortelazzo, "Hand gesture recognition with depth data," Proceedings of the 4th ACM/ IEEE international workshop on Analysis and retrieval of tracked events and motion in imagery stream, pp.9-16, 2013. DOI: 10.1145/2510650.2510651
  15. N. Kawarazaki, and A. I. B. Diaz, "Gesture recognition system for wheelchair control using a depth sensor," Proceedings of IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies, pp.48-53, 2013. DOI: 10.1109/CIRAT.2013.6613822