DOI QR코드

DOI QR Code

Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays

입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석

  • Received : 2019.12.09
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

We analyze the robustness of the existing predictor feedback controller for discrete-time linear systems with constant input delays against the structured model uncertainty. By modeling the constant input delay with a first-order PdE (Partial difference Equation), we replace the input delay with the PdE states. By applying a backstepping transformation, we build a target system that enables to construct an explicit Lyapunov function. Constructing the explicit Lyapunov function that covers the entire state variables, we prove the existence of an allowable maximum size of the structured model uncertainty to maintain stability and establish the robustness of the predictor feedback controller. The numerical example demonstrates that the stability of closed-loop system is maintained in the presence of the structured model uncertainty, and verifies the robustness of the predictor feedback controller.

본 논문에서는 상수 입력지연을 갖는 이산시간 선형시스템을 위한 기존의 예측기 피드백 제어기의 구조적 모델 불확실성에 대한 강인성을 해석한다. 상수 입력지연을 1차 PdE (Partial difference Equation)로 모델링하여 입력지연을 PdE 상태변수로 대체하고 백스테핑 변환을 적용하여 목표 시스템을 구축한다. 목표 시스템을 기반으로 전체 상태변수를 포함하는 명시적 리아푸노프 함수를 구성하여 안정성이 유지되는 구조적 모델 불확실성의 최대 크기의 존재를 증명하고 예측기 피드백 제어기의 강인성을 확립한다. 모의실험을 통하여 모델 불확실성이 존재하는 경우에도 닫힌 루프 시스템의 안정성이 유지되는 것을 예증하고 예측기 피드백 제어기의 강인성을 검증한다.

Keywords

References

  1. M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Birkhauser Boston, 2009.
  2. W. H. Kwon and A. E. Pearson, "Feedback stabilization of linear systems with delayed control," IEEE Transactions on Automatic Control, vol.25, pp.266-269, 1980. DOI: 10.1109/TAC.1980.1102288
  3. Z. Artstein, "Linear systems with delayed controls: a reduction," IEEE Transactions on Automatic Control, vol.27, pp.869-879, 1982. DOI: 10.1109/TAC.1982.1103023
  4. S. Mondie and W. Michiels, "Finite spectrum assignment of unstable time-delay systems with a safe implementation," IEEE Transactions on Automatic Control, vol.48, pp.2207-2212, 2003. DOI: 10.1109/TAC.2003.820147
  5. M. Krstic and A. Smyshlyaev, "Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays," Systems & Control Letters, vol.57, pp.750-758, 2008. DOI: 10.1109/CDC.2007.4434474
  6. M. Krstic, "Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch," Automatica, vol.44, pp.2930-2935, 2008. DOI: 10.1016/j.automatica.2008.04.010
  7. J.-Y. Choi and M. Krstic, "Compensation of time-varying input delay for discrete-time nonlinear systems," International Journal of Robust and Nonlinear Control, Vol.26, pp.1755-1776, 2016. DOI: 10.1002/rnc.3382
  8. J.-Y. Choi, "Exponential Stability of Predictor Feedback for Discrete-Time Linear Systems with Input Delays," Journal of Institute of Control, Robotics and Systems, Vol.19, No.7, pp.583-586, 2013. DOI: 10.5302/J.ICROS.2013.13.1913
  9. K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall, 1996.