DOI QR코드

DOI QR Code

BIPV 시스템을 위한 전이금속 산화물 다중층 컬러 유리 구현 기술 연구

Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System

  • Ahn, Hyeon-Sik (Department of Electronic Engineering, Hanbat National University) ;
  • Gasonoo, Akpeko (Department of Electronic Engineering, Hanbat National University) ;
  • Jang, Eun-Jeong (Department of Electronic Engineering, Hanbat National University) ;
  • Kim, Min-Hoi (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Jae-Hyun (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Choi, Yoonseuk (Department of Electronic Engineering, Hanbat National University)
  • 투고 : 2019.12.08
  • 심사 : 2019.12.26
  • 발행 : 2019.12.31

초록

이 논문에서는 전이 금속 산화물(TMO)층으로 구성된 다층 박막을 사용하는 BIPV(Building Integrated Photovoltaic) 시스템용 전면 컬러 유리를 제안하였다. 몰리브덴 산화물(MoO3) 및 텅스텐 산화물(WO3)은 굴절률 차이가 큰 계면을 형성하여 적절한 간섭효과를 얻을 수 있다. 단일 Thermal Evaporator 증착 방법을 통해 다층 박막을 제작함으로써 간단하고 빠르며 저렴한 제조 방법을 제안하였다. MoO3(60nm)/WO3(100nm) 다층 박막으로 90% 이상의 광 투과율을 갖는 자홍색 유리를 시연하였으며, 이 기술은 상용화된 BIPV 시스템에 유용할 것으로 기대된다.

This paper proposed colored front panel glass for Building Integrated Photovoltaic (BIPV) systems using multi-layered thin films composed of transition metal oxide (TMO) layers. Molybdenum oxide (MoO3) and tungsten oxide (WO3) provided complementary and suitable materials in making effective interference of reflected light from interfaces with significant difference in refractive indices. A simple, fast, and cheap fabrication method was achieved by depositing the multi-layer films in a single thermal evaporator. Magenta colored glass with optical transmittance of more than 90% was achieved with MoO3 (60nm)/WO3(100nm) multi-layered film. This technology could play in a critical role in commercial BIPV system applications.

키워드

참고문헌

  1. A. Henemann, "BIPV:Built-in solar energy," Renewable Energy Focus, vol.9, no.6, pp.14.16-19, 2008. DOI: 10.1016/S1471-0846(08)70179-3
  2. I. Ceron, E. Caamano-Martin, F. J. Neila, "'Stateof-the-art' of building integrated photovoltaic products," Renewable Energy, vol.58, pp.127-133, 2013. https://doi.org/10.1016/j.renene.2013.02.013
  3. A. K. Shukla, K. Sudhakar and P. Baredar, "Recent advancement in BIPV product technologies: A review," Energy and Buildings, vol.140, pp.188-195, 2017. DOI: 10.1016/j.enbuild.2017.02.015
  4. A. P. Enkvist, J. Dinkel, C. Lin, "Impact of the Financial Crisis on Carbon Economics: Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve," McKinsey & Company, 2010.
  5. M. Wolf, "Performance analysis of combined heating and photovoltaic power systems for residences," Energy Conversion, vol.16, no.1-2, pp.79-90, 1976. DOI: 10.1016/0013-7480(76)90018-8
  6. L. W. Florschuetz, "Extension of the Hottel-Whiller model to the analysis of combined photovoltaic/thermal flat plate collectors," Solar Energy, vol.22, no.4, pp.361-366, 1979. DOI: 10.1016/0038-092X(79)90190-7
  7. B. Kippelen, and J.-L. Bredas, "Organic photovoltaics," Energy Environ. Sci., vol.2, pp. 251-261, 2009. DOI: 10.1039/B812502N
  8. C. J. Brabec, "Organic photovoltaics: technology and market," Solar Energy Materials & Solar Cells, vol.83, no.2-3, pp.273-292, 2004. DOI: 10.1016/j.solmat.2004.02.030
  9. Y.-W. Su, S.-C. Lan, K.-H. Wei, "Organic photovoltaics," materialstoday, vol.15, no.12, pp.554-562, 2012. DOI: 10.1016/S1369-7021(13)70013-0
  10. M. Amado, F. Poggi, "Solar Energy Integration in Urban Planning: GUUD Model," Energy Proc., vol.50, pp.277-284, 2014. DOI: 10.1016/j.egypro.2014.06.034
  11. L. L. Kazmerski, "Photovoltaics: A review of cell and module technologies," Renewable and Sustainable Energy Reviews, vol.1, no.1-2, pp.71-170, 1997. DOI: 10.1016/S1364-0321(97)00002-6
  12. A. Schüler, C. Roecker, J. Boudaden, P. Oelhafen, J.-L. Scartezzini, "Potential of quarterwave interference stacks for colored thermal solar collectors," Solar Energy, vol.79, no.2, pp.122-130, 2005. DOI: 10.1016/j.solener.2004.12.008
  13. S. Mertin, V. Hody-Le Caer, M. Joly, I. Mack, P. Oelhafen,, J.-L. Scartezzini, A. Schuler, "Reactively sputtered coatings on architectural glazing for coloured active solar thermal facades," Energy and Buildings, vol.68, PART C, pp.764-770, 2014. DOI: 10.1016/j.enbuild.2012.12.030
  14. A. Gasonoo, H.-S. Ahn, M.-H. Kim, J.-H. Lee, Y. Choi, "Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System," j.inst.Korean.electr.electron.eng., vol.22, no.4, pp. 1056-1061, 2018. DOI: 10.7471/ikeee.2018.22.4.1056
  15. A. Pareek, S. V. Mohan, "Chapter 1.4 - Graphene and Its Applications in Microbial Electrochemical Technology," Microbial Electrochemical Technology, pp.75-97, 2019.
  16. J.-H. Lee, D.-S. Leem, H.-J. Kim, J.-J. Kim, "Effectiveness of p-dopants in an organic hole transporting material," Appl. Phys. Lett., vol.94, no.12, pp.123306, 2009. DOI: 10.1063/1.3107267
  17. J.-H. Lee, D.-S. Leem, J.-J. Kim, "Effect of host organic semiconductors on electrical doping," Organic Electronic. vol.11, no.3, pp.486-489, 2010. DOI: 10.1016/j.orgel.2009.12.002
  18. J.-H. Lee, H.-M. Kim, K.-B. Kim, J.-J. Kim, "Origin of charge generation efficiency of metal oxide p-dopants in organic semiconductors," Organic Electronic. vol.12, no.6, pp.950-954, 2011. DOI: 10.1016/j.orgel.2011.03.008