DOI QR코드

DOI QR Code

Genome size estimation of 43 Korean Carex

  • Received : 2019.12.06
  • Accepted : 2019.12.27
  • Published : 2019.12.30

Abstract

The genome size is defined as the amount of DNA in an unreplicated gametic chromosome complement and is expressed as the 1C value. It is a fundamental parameter of organisms that is useful for studies of the genome, as well as biodiversity and conservation. The genome sizes of Korean plants, including Carex (Cyperaceae), have been poorly reported. In this study, we report the genome sizes of 43 species and infraspecific taxa of Korean Carex using flow cytometry, and these results represent about 24.4% of the Carex species and infraspecific taxa distributed on the Korean peninsula. The Plant DNA C-Value Database (release 7.1) updated with and now including our data (a total of 372 Carex accessions) shows that the average genome size of members of the Carex species is 0.47 pg (1C), and the largest genome (C. cuspidate Bertol.; 1C = 1.64 pg) is 8.2 times larger than the smallest (C. brownii Tuck., C. kobomugi Ohwi, C. nubigena D. Don ex Tilloch & Taylor, and C. paxii Kuk.; 1C = 0.20 pg). The large genomes are frequently found in the subgen. Carex, especially in sect. Aulocystis, sect. Digitatae, sect. Glaucae, sect. Paniceae, and sect. Siderostictae. Our data updates the current understanding of genome sizes in Carex. This will serve as the basis for understanding the phylogeny and evolution of Carex and will be especially useful for future genome studies.

Keywords

References

  1. Bennett, M. D. and I. J. Leitch. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590. https://doi.org/10.1093/aob/mcq258
  2. Bennett, M. D. and J. B. Smith. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 274: 227-274. https://doi.org/10.1098/rstb.1976.0044
  3. Cho, Y., J.-W. Kim and S. H. Park. 2016. Grasses and Sedges in South Korea. Geobook Co., Seoul, 527 pp. (in Korean).
  4. Chung, K.-S., A. L. Hipp and E. H. Roalson. 2012. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution 66: 2708-2722. https://doi.org/10.1111/j.1558-5646.2012.01624.x
  5. Chung, K.-S., T. Hoshino, T. Masaki, J. C. Yang and H.-T. Im. 2016. Cytological studies on seven species of Korean Carex (Cyperaceae). Cytologia 81: 143-147. https://doi.org/10.1508/cytologia.81.143
  6. Dolezel, J. and J. Bartos. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99-110. https://doi.org/10.1093/aob/mci005
  7. Dolezel, J. and W. Gohde, 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103-106. https://doi.org/10.1002/cyto.990190203
  8. Dolezel, J. and J. Greilhuber. 2010. Nuclear genome size: are we getting closer? Cytometry Part A 77A: 635-642. https://doi.org/10.1002/cyto.a.20915
  9. Dolezel, J., J. Greilhuber and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244. https://doi.org/10.1038/nprot.2007.310
  10. Egorova, T. V. 1999. The Sedges (Carex L.) of Russia and Adjacent States (within the Limits of the former USSR). St-Petersburg State Chemical-Pharmaceutical Academy, St-Petersburg and Missouri Botanical Garden Press, St. Louis, MO, 772 pp.
  11. Escudero, M., A. L. Hipp, M. J. Waterway and L. M. Valente. 2012. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molecular Phylogenetics and Evolution 63: 650-655. https://doi.org/10.1016/j.ympev.2012.02.005
  12. Fleischmann, A., T. P. Michael, F. Rivadavia, A. Sousa, W. Wang, E. M. Temsch, J. Greilhuber, K. F. Muller and G. Heubl. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114: 1651-1663. https://doi.org/10.1093/aob/mcu189
  13. Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. https://doi.org/10.1126/science.220.4601.1049
  14. Global Carex Group. 2015. Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Botanical Journal of the Linnean Society 179: 1-42. https://doi.org/10.1111/boj.12298
  15. Grover, C. E. and J. F. Wendel, 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 382732.
  16. Hipp, A. L., M. Escudero and K.-S. Chung. 2013. Holocentric chromosomes. In Brenner's Encyclopedia of Genetics. 2nd ed. Maloy, S. and K. Hughes (eds.), Elsevier Inc., New York. Pp. 499-501.
  17. Hipp, A. L., P. E. Rothrock and E. H. Roalson. 2009. The evolution of chromosome arrangements in Carex (Cyperaceae). The Botanical Review 75: 96-109. https://doi.org/10.1007/s12229-008-9022-8
  18. Hipp, A. L., P. E. Rothrock, R. Whitkus and J. A. Weber. 2010. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Molecular Ecology 19:3124-3138. https://doi.org/10.1111/j.1365-294X.2010.04741.x
  19. Kejnovsky, E., J. S. Hawkins and C. Feschotte. 2012. Plant transposable elements: biology and evolution. In Plant Genome Diversity, Vol. 1. Wendel, J., J. Greilhuber, J. Dolezel and I. Leitch (eds.), Springer, Vienna. Pp. 17-34.
  20. Leitch, I. J., E. Johnston, J. Pellicer, O. Hidalgo and M. D. Bennett. 2019. Angiosperm DNA C-values database (release 9.0, April 2019). Retrieved Jul. 7, 2019, available from https://cvalues.science.kew.org/.
  21. Leitch, A. R. and I. J. Leitch. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646. https://doi.org/10.1111/j.1469-8137.2012.04105.x
  22. Lipnerova, I., P. Bures, L. Horova and P. Smarda. 2013. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Annals of Botany 111: 79-94. https://doi.org/10.1093/aob/mcs239
  23. Loureiro, J., J. Suda, J. Dolezel and C. Santos. 2007. FLOWER: a plant DNA flow cytometry database. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes. Dolezel, J., J. Greilhuber and J. Suda (eds.), Wiley-VCH, Weinheim. Pp. 423-438.
  24. Nishikawa, K., Y. Furuta and K. Ishitobi. 1984. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. The Japanese Journal of Genetics 59: 465-472. https://doi.org/10.1266/jjg.59.465
  25. Otto, F. 1990. DAPI Staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods in Cell Biology 33: 105-110. https://doi.org/10.1016/S0091-679X(08)60516-6
  26. Park, C.-W. 2007. The Genera of Vascular Plants of Korea. Flora of Korea Editorial Committee. Academy Publishing Co., Seoul, 1482 pp. (in Korean)
  27. Pellicer, J., M. F. Fay and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10-15. https://doi.org/10.1111/j.1095-8339.2010.01072.x
  28. Tanaka, N. 1949. Chromosome studies in the genus Carex, with special reference to aneuploidy and polyploidy. Cytologia 15: 15-29. https://doi.org/10.1508/cytologia.15.15
  29. Wang, N., H. A. McAllister, P. R. Bartlett and R. J. A. Buggs. 2016. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Annals of Botany 117: 1023-1035. https://doi.org/10.1093/aob/mcw048
  30. Yan, H., S. L . Martin, W. A. Bekele, R. G. Latta, A. Diederichsen, Y. Peng and N. A. Tinker. 2016. Genome size variation in the genus Avena. Genome 59: 209-220. https://doi.org/10.1139/gen-2015-0132
  31. Zonneveld, B. J. M., I. J. Leitch and M. D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229-244. https://doi.org/10.1093/aob/mci170