DOI QR코드

DOI QR Code

조록싸리 종내분류군과 잡종의 분류학적 연구

Taxonomic study on infraspecific taxa of Lespedeza maximowiczii and hybrids with related species

  • 투고 : 2019.11.12
  • 심사 : 2019.12.25
  • 발행 : 2019.12.30

초록

조록싸리(Lespedeza maximowiczii) 내에 많은 종내분류군들 및 근연분류군과의 잡종들이 기록되었지만, 이들의 분류학적 실체에 대해서는 학자들간에 이견이 있다. 본 연구는 조록싸리와 근연분류군간 잡종인 지리산싸리(L. chiisanensis), 진도싸리(L. patentibicolor) 및 조록싸리의 종내분류군인 털조록싸리(var. tomentella), 늦싸리(var. elongata), 삼색싸리(var. tricolor)의 실체를 규명하기 위해, 외부형태를 관찰하고 microsatellite를 이용하여 유전적 구조를 분석하였다. 연구 결과 털조록싸리와 늦싸리의 꽃과 잎의 형태는 조록싸리의 변이폭에 속했고, 유전적으로도 두 분류군이 조록싸리와 같이 묶였다. 삼색싸리는 꽃의 구조와 색에서 근연종인 L. buergeri와 유사한 반면 소엽 정단부와 소포엽의 형태는 조록싸리와 가까웠다. 유전적 구조에서도 삼색싸리의 개체들은 조록싸리와 L. buergeri의 계통이 혼합된 형태를 보이거나(K = 3), 독립되었다(K = 5). 잡종들의 경우, 지리산싸리의 꽃과 잎의 형태는 조록싸리와 구별되지 않는 반면, 진도싸리의 꽃 형질은 싸리(L. bicolor)의 변이폭에 속했는데, 유전적 계통도 각각 조록싸리와 싸리로 지정되었다. 본 연구결과를 종합하여 저자들은 털조록싸리와 늦싸리를 조록싸리의 품종, f. friebeana (Schindl.) D. P. Jin, J. W. Park & B. H. Choi로 처리하였는데, 이는 L. friebeana가 var. tomentella 보다 먼저 발표되었기 때문이다. 또한 삼색싸리는 독립종, L. tricolor (Nakai) D. P. Jin, J. W. Park & B. H. Choi 로 처리하였고, 지리산싸리는 조록싸리의 이명으로 처리하였다. 한편 진도싸리는 싸리의 이명으로 판단된다.

Many infraspecific taxa within Lespedeza maximowiczii and hybrids with related species have been described, but taxonomic verification remains controversial. We examined the morphological traits of hybrids (L. chiisanensis and L. patentibicolor) and infraspecific taxa (var. tomentella, elongata, and tricolor) and analyzed their genetic structures using microsatellite loci. Flower and leaflet shapes in var. tomentella and elongata were within the range of variation of those in var. maximowiczii, and individuals in the two former varieties were grouped into var. maximowiczii. Lespedeza maximowiczii var. tricolor was similar to L. buergeri in terms of the structure and flower color, whereas the leaflet and bracteole shapes of var. tricolor were similar to those of var. maximowiczii. Based on the genetic structure (K = 3), var. tricolor had a mixed lineage with L. maximowiczii and L. buergeri. In addition, these formed a distinct lineage at K = 5. For two hybrids, the flower and leaflet structure in L. chiisanensis did not differ from those in L. maximowiczii, whereas the flowers of L. patentibicolor were within the range of variation of L. bicolor. In addition, L. chiisanensis and L. patentibicolor were assigned to L. maximowiczii and L. bicolor, respectively, based on the genetic structure. We treated var. tomentella and elongata as a forma, f. friebeana, because L. friebeana preceded var. tomentella, whereas var. tricolor was treated as a distinct species, L. tricolor. Lespedeza chiisanensis was recognized as a synonym of L. maximowiczii. Lespedeza patentibicolor was considered to be L. bicolor.

키워드

참고문헌

  1. Akiyama, S. 1988. A revision of the genus Lespedeza section Macrolespedeza (Leguminosae). The University Museum, The University of Tokyo, Bulletin 33: 1-170.
  2. Akiyama, S. 2004. A new hybrid Lespedeza x miquelii (Leguminosae). Journal of Japanese Botany 79: 230-234.
  3. Brunet, J., J. E. Zalapa, F. Pecori and A. Santini. 2013. Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy. Biological Invasions 15: 2717-2730. https://doi.org/10.1007/s10530-013-0486-z
  4. Castillo-Mendoza, E., D. Salinas-Sanchez, L. Valencia-Cuevas, A. Zamilpa and E. Tovar-Sanchez. 2019. Natural hybridisation among Quercus glabrescens, Q. rugosa and Q. obtusata (Fagaceae): microsatellites and secondary metabolites markers. Plant Biology 21: 110-121. https://doi.org/10.1111/plb.12899
  5. Chang, C. S. and H. Kim. 2019. Flora of the Korean Peninsula. Version 1.16. TB Lee Herbarium. Occurrence dataset. Retrieved Nov. 12, 2019, available from https://doi.org/10.15468/fyxnsd.
  6. Choi, B. H. 2007. Lespedeza Michx. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 614-618.
  7. Duminil, J., D. Kenfack, V. Viscosi, L. Grumiau and O. J. Hardy. 2012. Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Molecular Phylogenetics and Evolution 62: 275-285. https://doi.org/10.1016/j.ympev.2011.09.020
  8. Earl, D. A. and B. M. von Holdt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  9. Hatusima, S. 1967. Lespedeza: sects. Macrolespedeza and Heterolespedeza from Japan, Corea and Formosa. Memoirs of the Faculty of Agriculture, Kagoshima University 6: 1-17.
  10. Jin, D.-P., W.-B. Cho, I.-S. Choi and B.-H. Choi. 2016a. Isolation and characterization of 28 microsatellite loci for a Korean endemic, Lespedeza maritima (Fabaceae). Applications in Plant Sciences 4: 1500089. https://doi.org/10.3732/apps.1500089
  11. Jin, D.-P., J.-H. Lee, B. Xu and B.-H. Choi. 2016b. Phylogeography of East Asian Lespedeza buergeri (Fabaceae) based on chloroplast and nuclear ribosomal DNA sequence variations. Journal of Plant Research 129: 793-805. https://doi.org/10.1007/s10265-016-0831-2
  12. Jin, D.-P., B. Xu and B.-H. Choi. 2018. Taxonomic reconsideration of Chinese Lespedeza maximowiczii (Fabaceae) based on morphological and genetic features, and recommendation as an independent species L. pseudomaximowiczii. Korean Journal of Plant Taxonomy 48: 153-162. https://doi.org/10.11110/kjpt.2018.48.3.153
  13. Kopelman, N. M., J. Mayzel, M. Jakobsson, N. A. Rosenberg and I. Mayrose. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179-1191. https://doi.org/10.1111/1755-0998.12387
  14. Langella, O. 2011. Populations 1.2.32. Retrieved Dec. 9, 2019 available from http://www.bioinformatics.org/project/?group_id=84.
  15. Lee, J.-H., D.-P. Jin and B.-H. Choi. 2014. Genetic differentiation and introgression among Korean evergreen Quercus (Fagaceae) are revealed by microsatellite markers. Annales Botanici Fennici 51: 39-48. https://doi.org/10.5735/085.051.0105
  16. Lee, M. H. 1978. Studies on the genus Lespedeza in Korea: characteristics chosen for an identification of the genus Lespedeza. Bulletin of the Arboretum Seoul National University 2: 7-28.
  17. Lee, T. B. 1965. The Lespedeza of Korea (1). Bulletin of the Seoul National University Forests 2: 1-43.
  18. Lee, T. B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul. Pp. 468-472.
  19. Lee, T. B. and M. H. Lee. 1975. The Lespedeza of Korea (2): trichomes for an identification of Lespedeza. Seoul National University Faculty Papers 4: 1-5.
  20. Nakai, T. 1914. Vegetation of Island Wando (Wangto shokubutsu hokokusho). Governor-General of Korea (Chosen sotokufu). 35 pp. (in Japanese)
  21. Nakai, T. 1919. Notulae ad plantas Japoniae et Coreae XXI. Botanical Magazine Tokyo 33: 193-216. https://doi.org/10.15281/jplantres1887.33.395_193
  22. Nakai, T. 1923. Notulae ad plantas Japoniae et Coreae XXX. Botanical Magazine Tokyo 37: 69-82. https://doi.org/10.15281/jplantres1887.37.437_en69
  23. Nakai, T. 1927. Lespedeza of Japan and Korea. The Forestal Experiment Station of Government General of Chosen 6: 1-101.
  24. Nei, M., F. Tajima and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution 19: 153-170. https://doi.org/10.1007/BF02300753
  25. Ohashi, H. and T. Nemoto. 2014. A new system of Lespedeza (Leguminosae tribe Desmodieae). Journal of Japanese Botany 89: 1-11.
  26. Ohashi, H., T. Nemoto and K. Ohashi. 2009. A revision of Lespedeza subgenus Macrolespedeza (Leguminosae) in China. Journal of Japanese Botany 84: 197-223.
  27. Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  28. Schindler, A. K. 1911. Lespedezae novae et criticae. I. Repertorium novarum specierum regni vegetabilis 9: 514-523. (in German) https://doi.org/10.1002/fedr.19110093205
  29. Uyeki, H. 1941. Trees and forests (Jumoku to shinrin). Bulletin of Forestry Society of Korea (Chosen sanrin kaiho) 194: 7-13. (in Japanese)
  30. Xu, B., N. Wu, X.-F. Gao and L.-B. Zhang. 2012. Analysis of DNA sequences of six chloroplast and nuclear genes suggests incongruence, introgression, and incomplete lineage sorting in the evolution of Lespedeza (Fabaceae). Molecular Phylogenetics and Evolution 62: 346-358. https://doi.org/10.1016/j.ympev.2011.10.007
  31. Xu, B., X.-M. Zeng, X.-F. Gao, D.-P. Jin and L.-B. Zhang. 2017. ITS non-concerted evolution and rampant hybridization in the legume genus Lespedeza (Fabaceae). Scientific Reports 7: 40057. https://doi.org/10.1038/srep40057
  32. Zeng, Y.-F., J.-G. Zhang, A.-G. Duan and B. Abuduhamiti. 2016. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility. Scientific Reports 6: 28043. https://doi.org/10.1038/srep28043

피인용 문헌

  1. Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus vol.22, pp.13, 2019, https://doi.org/10.3390/ijms22137237