DOI QR코드

DOI QR Code

Seed collection strategies for plant restoration with the aid of neutral genetic diversity

  • CHUNG, Mi Yoon (Division of Life Science and the Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • SON, Sungwon (Division of Plant Resources, Korea National Arboretum) ;
  • MAO, Kangshan (Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University) ;
  • LOPEZ-PUJOL, Jordi (Botanic Institute of Barcelona (IBB, CSIC-ICUB)) ;
  • CHUNG, Myong Gi (Department of Biology and RINS, Gyeongsang National University)
  • Received : 2019.10.29
  • Accepted : 2019.12.16
  • Published : 2019.12.30

Abstract

One key step in the plant restoration process is the collection of seeds from the field. For the selection of source populations of target plant species for translocation purposes (reintroduction or reinforcements), several approaches are possible. A practical method involves the use of data from reciprocal transplant studies. If no direct data are available, knowledge of population genetics and the phylogeography of the target species can serve as an alternative. In this short review, we briefly propose guidelines for those collecting seeds for plant species restoration based on population genetics theory, focusing on two main questions: Where does the plant material come from and how are sources designated, and how are seeds efficiently collected from local populations? While genetic data on a larger scale (phylogeography and population genetics) are needed to form a reply to the first question, similar data on a smaller scale (fine-scale genetic structures within populations) are necessary to shed light on the second issue.

Keywords

References

  1. Abeli, T. and K. Dixon. 2016. Translocation ecology: the role of ecological sciences in plant translocation. Plant Ecology 217: 123-125. https://doi.org/10.1007/s11258-016-0575-z
  2. Becker, U., T. Reinhold and D. Matthies. 2006. Effects of pollination distance on reproduction and offspring performance in Hypochoeris radicata: experiments with plants from three European regions. Biological Conservation 132: 109-118. https://doi.org/10.1016/j.biocon.2006.03.018
  3. Berg, E. E. and J. L. Hamrick. 1995. Fine-scale genetic structure of a Turkey oak forest. Evolution 49: 110-120. https://doi.org/10.1111/j.1558-5646.1995.tb05963.x
  4. Bischoff, A., L. Cremieux, M. Smilauerova, C. S. Lawson, S. R. Mortimer, J. Dolezal, V. Lanta, A. R. Edwards, A. J. Brook, M. Macel, J. Leps, T. Steinger and H. Müller-Scharer. 2006. Detecting local adaptation in widespread grassland species: the importance of scale and local plant community. Journal of Ecology 94: 1130-1142. https://doi.org/10.1111/j.1365-2745.2006.01174.x
  5. Campbell, R. K. 1991. Soils, seed-zone maps, and physiography: guidelines for seed transfer of Douglas-fir in south-western Oregon. Forest Science 37: 973-986.
  6. Center for Plant Conservation. 1996. Guidelines for developing a rare plant reintroduction plan. In Restoring Diversity. Falk, D. A., C. I. Millar and M. Olwell (eds.), Island Press, Washington, DC. Pp. 453-490.
  7. Center for Plant Conservation. 2019. The importance of representing genetic diversity in plant conservation collections. CPC Best Plant Conservation Practices to Support Species Survival in the Wild. Retrieved Sep. 21, 2019, available from: https://plantnucleus.com/best-practices/importance-representinggenetic-diversity-plant-conservation-collections.
  8. Chung, M. G. and B. K. Epperson. 1999. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53: 1068-1078. https://doi.org/10.1111/j.1558-5646.1999.tb04522.x
  9. Chung, M. G. and B. K. Epperson. 2000. Spatial genetic structure of allozyme polymorphisms in a population of Eurya japonica (Theaceae). Silvae Genetica 49: 1-4.
  10. Chung, M. G., J. M. Chung, M. Y. Chung and B. K. Epperson. 2000a. Spatial distribution of allozyme polymorphisms following clonal and sexual reproduction in populations of Rhus javanica (Anacardiaceae). Heredity 84: 178-185. https://doi.org/10.1046/j.1365-2540.2000.00660.x
  11. Chung, M. G., M. Y. Chung, G. S. Oh and B. K. Epperson. 2000b. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85: 490-497. https://doi.org/10.1046/j.1365-2540.2000.00781.x
  12. Chung, M. G., M. Y. Chung and B. K. Epperson. 2001. Conservation genetics of an endangered herb, Hanabusaya asiatica (Campanulaceae). Plant Biology 3: 42-49. https://doi.org/10.1055/s-2001-11744
  13. Chung, M. Y., B. K. Epperson and M. G. Chung. 2003. Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57: 62-73. https://doi.org/10.1111/j.0014-3820.2003.tb00216.x
  14. Chung, M. Y., C. P. Chun and M. G. Chung. 1999. Clonal and spatial genetic structure in a population of the endangered herb Lycoris sanguinea var. koreana (Amaryllidaceae). Genes and Genetic Systems 74: 61-66. https://doi.org/10.1266/ggs.74.61
  15. Chung, M. Y., J. D. Nason and M. G. Chung. 2004. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). American Journal of Botany 91: 52-57. https://doi.org/10.3732/ajb.91.1.52
  16. Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42: 834-838. https://doi.org/10.1111/j.1558-5646.1988.tb02504.x
  17. Diniz-Filho, J. A. F. and M. P. C. Telles. 2002. Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conservation Biology 16: 924-935. https://doi.org/10.1046/j.1523-1739.2002.00295.x
  18. Epperson, B. K. and Chung, M. G. 2001. Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). American Journal of Botany 88: 1006-1010. https://doi.org/10.2307/2657081
  19. Escudero, A., J. M. Iriondo and M. E. Torres. 2003. Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation 113: 351-365. https://doi.org/10.1016/S0006-3207(03)00122-8
  20. Falk, D. A. and K. E. Holsinger. 1991. Genetics and Conservation of Rare Plants. Oxford University Press, New York, NY, 304 pp.
  21. Falk, D. A., E. E. Knapp and E. O. Guerrant. 2001. An Introduction to Restoration Genetics. Plant Conservation Alliance, Bureau of Land Management, US Department of Interior, US Environmental Protection Authority. Retrieved Sep. 21, 2019, available from: http://www.ser.org/pdf/SER -restoration-genetics.pdf.
  22. Falk, D. A., C. M. Richards, A. M. Montalvo and E. E. Knapp. 2006. Population and ecological genetics in restoration ecology. In Foundations of Restoration Ecology. Falk, D. A., M. A. Palmer and J. B. Zedler (eds.), Island Press, Washington, DC. Pp. 14-41.
  23. Fenster, C. B. and M. R. Dudash. 1994. Genetic considerations for plant population restoration and conservation. In Restoration of Endangered Species. Bowles, M. L. and C. J. Whelan (eds.), Cambridge University Press, Cambridge. Pp. 34-62.
  24. Fenster, C. B., X. Vekemans and O. J. Hardy. 2003. Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57: 995-1007. https://doi.org/10.1111/j.0014-3820.2003.tb00311.x
  25. Godefroid, S., C. Piazza, G. Rossi, S. Buord, A.-D. Stevens, R. Aguraiuja, C. Cowell, C. W. Weekley, G. Vogg, J. M. Iriondo, I. Johnson, B. Dixon, D. Gordon, S. Magnanon, B. Valentin, K. Bjureke, R. Koopman, M. Vicens, M. Virevaire and T. Vanderborght. 2011. How successful are plant species reintroductions? Biological Conservation 144: 672-682. https://doi.org/10.1016/j.biocon.2010.10.003
  26. Godefroid, S. and T. Vanderborght. 2011. Plant reintroductions: the need for a global database. Biodiversity and Conservation 20: 3683-3688. https://doi.org/10.1007/s10531-011-0120-2
  27. Hamrick, J. L. and M. J. W. Godt. 1996. Conservation genetics of endemic plant species. In Conservation Genetics: Case Histories from Nature. Avise, J. C. and J. L. Hamrick (eds.), Chapman & Hall, New York, NY. Pp. 281-304.
  28. Hamrick, J. L. and J. D. Nason. 1996. Consequences of dispersal in plants. In Population Dynamics in Ecological Space and Time. Rhodes, O. E. Jr., R. K. Chesser and M. H. Smith (eds.), University of Chicago Press, Chicago, IL. Pp. 203-236.
  29. Havens, K. 1998. The genetics of plant restoration. Restoration and Management Notes 16: 68-72.
  30. Hubert, J. and J. Cottrell. 2007. The Role of Forest Genetic Resources in Helping British Forests Respond to Climate Change. Forestry Commission, Edinburgh, 12 pp.
  31. Hufford, K. M. and S. J. Mazer. 2003. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution 18: 147-155. https://doi.org/10.1016/S0169-5347(03)00002-8
  32. IUCN/SSC. 2013. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. IUCN Species Survival Commission, Gland, 57 pp.
  33. Kirk, H. and J. R. Freeland. 2011. Applications and implications of neutral versus non-neutral markers in molecular ecology. International Journal of Molecular Sciences 12: 3966-3988. https://doi.org/10.3390/ijms12063966
  34. Knapp, E. E. and K. J. Rice. 1994. Starting from seed: Genetic issues in using native grasses for restoration. Restoration and Management Notes 12: 40-45.
  35. Krauss, S. L. and J. M. Koch. 2004. Rapid genetic delineation of provenance for plant community restoration. Journal of Applied Ecology 41: 1162-1173. https://doi.org/10.1111/j.0021-8901.2004.00961.x
  36. Krauss, S. L. and T. H. He. 2006. Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation. Journal for Nature Conservation 14: 190-199. https://doi.org/10.1016/j.jnc.2006.05.002
  37. Leiss, K. A. and H. Muller-Scharer. 2001. Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. American Journal of Botany 88: 1593-1599. https://doi.org/10.2307/3558403
  38. Lindgren, D. and C. C. Ying. 2000. A model integrating source adaptation and seed use. New Forests 20: 87-104. https://doi.org/10.1023/A:1006708213824
  39. Linhart, Y. B., J. B. Mitton, K. B. Sturgeon and M. L. Davis. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407-426. https://doi.org/10.1038/hdy.1981.49
  40. Loiselle, B. A., V. L. Sork, J. Nason and C. Graham. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425. https://doi.org/10.1002/j.1537-2197.1995.tb12679.x
  41. Maki, M. and T. Yahara. 1997. Spatial structure of genetic variation in a population of the endangered plant Cerastium fischerianum var. molle (Caryophyllaceae). Genes and Genetics Systems 72: 239-242. https://doi.org/10.1266/ggs.72.239
  42. Markert, J. A., D. M. Champlin, R. Gutjahr-Gobell, J. S. Grear, A. Kuhn, T. J. McGreevy, A. Roth, M. J. Bagley and D. E. Nacci. 2010. Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology 10: 205. https://doi.org/10.1186/1471-2148-10-205
  43. Maschinski, J. and M. A. Albrecht. 2017. Center for Plant Conservation’s Best Practice Guidelines for the reintroduction of rare plants. Plant Diversity 39: 390-395. https://doi.org/10.1016/j.pld.2017.09.006
  44. Maunder, M. 1992. Plant reintroduction: an overview. Biodiversity and Conservation 1: 51-61. https://doi.org/10.1007/BF00700250
  45. McKay, J. K., C. E. Christian, S. Harrison and K. J. Rice. 2005. "How local is local?": a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology 13: 432-440. https://doi.org/10.1111/j.1526-100X.2005.00058.x
  46. Mistretta, O. 1994. Genetics of species re-introductions: applications of genetic analysis. Biodiversity and Conservation 3: 184-190. https://doi.org/10.1007/BF02291888
  47. Ottewell, K. M., D. C. Bickerton, M. Byrne and A. J. Lowe. 2016. Bridging the gap: a genetic assessment framework for population- level threatened plant conservation prioritization and decision-making. Diversity and Distributions 22: 174-188. https://doi.org/10.1111/ddi.12387
  48. Perry, D. J. and P. Knowles. 1991. Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands. Heredity 66: 137-142. https://doi.org/10.1038/hdy.1991.17
  49. Pujol, B. and J. R. Pannell. 2008. Reduced responses to selection after species range expansion. Science 321: 96. https://doi.org/10.1126/science.1157570
  50. Rehfeldt, G. E. 1995. Genetic variation, climate models and the ecological genetics of Larix occidentalis. Forest Ecology and Management 78: 21-37. https://doi.org/10.1016/0378-1127(95)03602-4
  51. Rice, K. J. and R. N. Mack. 1991. Ecological genetics of Bromus tectorum. III. The demography of reciprocally sown populations. Oecologia 88: 91-101. https://doi.org/10.1007/BF00328408
  52. Rieseberg, L. H. and S. M. Swensen. 1996. Conservation genetics of endangered island plants. In Conservation Genetics: Case Histories from Nature. Avise, J. C. and J. L. Hamrick (eds.), Chapman & Hall, New York, NY. Pp. 305-334.
  53. Sokal, R. R. 1979. Ecological parameters inferred from spatial correlograms. In Contemporary Quantitative Ecology and Related Ecometrics. Patil, G. P. and M. L. Rosenzweig (eds.), International Cooperative Publishing House, Fairland, MD. Pp. 167-196.
  54. Sokal, R. R. and D. E. Wartenberg. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105: 219-237. https://doi.org/10.1093/genetics/105.1.219
  55. Torres, E., J. M. Iriondo, A. Escudero and C. Perez. 2003. Analysis of within-population spatial genetic structure in Antirrhinum microphyllum (Scrophulariaceae). American Journal of Botany 90: 1688-1695. https://doi.org/10.3732/ajb.90.12.1688
  56. Vali, U., A. Einarsson, L. Waits and H. Ellegren. 2008. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Molecular Ecology 17: 3808-3817. https://doi.org/10.1111/j.1365-294X.2008.03876.x
  57. Van Rossum, F. and L. Triest. 2006. Fine-scale genetic structure of the common Primula elatior (Primulaceae) at an early stage of population fragmentation. American Journal of Botany 93: 1281-1288. https://doi.org/10.3732/ajb.93.9.1281
  58. Vander Mijnsbrugge, K., A. Bischoff and B. Smith. 2010. A question of origin: where and how to collect seed for ecological restoration. Basic and Applied Ecology 11: 300-311. https://doi.org/10.1016/j.baae.2009.09.002
  59. Vander Mijnsbrugge, K., E. Coart, H. Beeckman and J. Van Slycken. 2003. Conservation measures for autochthonous oaks in Flanders. Forest Genetics 10: 207-217.
  60. Volis, S. 2011. Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and QST-FST test. New Phytologist 192: 237-248. https://doi.org/10.1111/j.1469-8137.2011.03799.x
  61. Volis, S. 2016. Conservation-oriented restoration: how to make it a success? Israel Journal of Plant Sciences 63: 276-296. https://doi.org/10.1080/07929978.2016.1255020
  62. Waser, N. M. and M. V. Price. 1985. Reciprocal transplant experiments with Delphinium nelsonii (Ranunculaceae): evidence for local adaptation. American Journal of Botany 72: 1726-1732. https://doi.org/10.1002/j.1537-2197.1985.tb08445.x
  63. Wright, S. 1951. The genetical structure of populations. Annals of Eugenics 15: 323-354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
  64. Ying, C. C. and A. D. Yanchuk. 2006. The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. Forest Ecology and Management 227: 1-13. https://doi.org/10.1016/j.foreco.2006.02.028
  65. Zeng, Y.-F., W.-T. Wang, W.-J. Liao, H.-F. Wang and D.-Y. Zhang. 2015. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Molecular Ecology 24: 5676-5691. https://doi.org/10.1111/mec.13408
  66. Zhang, Z.-M., J. Lopez-Pujol, X. Gong, H.-F. Wang, R. Vilatersana and S.-L. Zhou. 2018. Population genetic dynamics of Himalayan-Hengduan tree peonies, Paeonia subsect. Delavayanae. Molecular Phylogenetics and Evolution 125: 62-77. https://doi.org/10.1016/j.ympev.2018.03.003