DOI QR코드

DOI QR Code

Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice

  • Thi, Van Anh Do (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Jeon, Hyung Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Sang Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Lee, Hayyoung (Institute of Biotechnology, Chungnam National University) ;
  • Kim, Young Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2019.08.22
  • Accepted : 2019.11.06
  • Published : 2019.12.31

Abstract

Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL-15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancer-cell vaccine using mitomycin C (MMC)-treated IL-15:IL-15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) long-term protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.

Keywords

References

  1. Alahari, S.V., Dong, S., and Alahari, S.K. (2015). Are macrophages in tumors good targets for novel therapeutic approaches? Mol. Cells 38, 95-104. https://doi.org/10.14348/MOLCELLS.2015.2298
  2. Bamford, R.N., DeFilippis, A.P., Azimi, N., Kurys, G., and Waldmann, T.A. (1998). The 5' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J. Immunol. 160, 4418-4426.
  3. Bergado Baez, G., Hernandez Fernandez, D.R., Mazorra Herrera, Z., and Sanchez Ramirez, B. (2018). HER1-based vaccine: simultaneous activation of humoral and cellular immune response. Semin. Oncol. 45, 75-83. https://doi.org/10.1053/j.seminoncol.2018.05.002
  4. Bern, M.D., Parikh, B.A., Yang, L., Beckman, D.L., Poursine-Laurent, J., and Yokoyama, W.M. (2019). Inducible down-regulation of MHC class I results in natural killer cell tolerance. J. Exp. Med. 216, 99-116. https://doi.org/10.1084/jem.20181076
  5. Bordon, Y. (2015). T cell memory: new insight on old-timers. Nat. Rev. Immunol. 15, 331. https://doi.org/10.1038/nri3866
  6. Chaurasiya, S. and Warner, S. (2017). Viroimmunotherapy for colorectal cancer: clinical studies. Biomedicines 5, E11.
  7. Chiang, C.L., Coukos, G., and Kandalaft, L.E. (2015). Whole tumor antigen vaccines: where are we? Vaccines (Basel) 3, 344-372. https://doi.org/10.3390/vaccines3020344
  8. Cockerill, P.A., Knoedler, J.J., Frank, I., Tarrell, R., and Karnes, R.J. (2016). Intravesical gemcitabine in combination with mitomycin C as salvage treatment in recurrent non-muscle-invasive bladder cancer. BJU Int. 117, 456-462. https://doi.org/10.1111/bju.13088
  9. Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P., and Boon, T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135-146. https://doi.org/10.1038/nrc3670
  10. de Gruijl, T.D., van den Eertwegh, A.J., Pinedo, H.M., and Scheper, R.J. (2008). Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 57, 1569-1577. https://doi.org/10.1007/s00262-008-0536-z
  11. Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2016). The membranebound form of IL-17A promotes the growth and tumorigenicity of colon cancer cells. Mol. Cells 39, 536-542. https://doi.org/10.14348/molcells.2016.0048
  12. Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2018). Ectopically expressed membrane-bound form of IL-9 exerts immune-stimulatory effect on CT26 colon carcinoma cells. Immune Netw. 18, e12. https://doi.org/10.4110/in.2018.18.e12
  13. Drake, A., Kaur, M., Iliopoulou, B.P., Phennicie, R., Hanson, A., and Chen, J. (2016). Interleukins 7 and 15 maintain human T cell proliferative capacity through STAT5 signaling. PLoS One 11, e0166280. https://doi.org/10.1371/journal.pone.0166280
  14. Dubois, S., Mariner, J., Waldmann, T.A., and Tagaya, Y. (2002). IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537-547. https://doi.org/10.1016/S1074-7613(02)00429-6
  15. Dubois, S., Patel, H.J., Zhang, M., Waldmann, T.A., and Muller, J.R. (2008). Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J. Immunol. 180, 2099-2106. https://doi.org/10.4049/jimmunol.180.4.2099
  16. Epardaud, M., Elpek, K.G., Rubinstein, M.P., Yonekura, A.R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J.A., Goldrath, A.W., and Turley, S.J. (2008). Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res. 68, 2972-2983. https://doi.org/10.1158/0008-5472.CAN-08-0045
  17. Fehniger, T.A. and Caligiuri, M.A. (2001). Interleukin 15: biology and relevance to human disease. Blood 97, 14-32. https://doi.org/10.1182/blood.V97.1.14
  18. Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D.A., Karantza, V., et al. (2015). Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856-880. https://doi.org/10.15252/embj.201490784
  19. Holz, L.E., Prier, J.E., Freestone, D., Steiner, T.M., English, K., Johnson, D.N., Mollard, V., Cozijnsen, A., Davey, G.M., Godfrey, D.I., et al. (2018). CD8(+) T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 25, 68-79.e4. https://doi.org/10.1016/j.celrep.2018.08.094
  20. Hu, Q., Ye, X., Qu, X., Cui, D., Zhang, L., Xu, Z., Wan, H., Zhang, L., and Tao, W. (2018). Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci. Rep. 8, 7675. https://doi.org/10.1038/s41598-018-25987-4
  21. Kim, P.S., Kwilas, A.R., Xu, W., Alter, S., Jeng, E.K., Wong, H.C., Schlom, J., and Hodge, J.W. (2016). IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7, 16130-16145. https://doi.org/10.18632/oncotarget.7470
  22. Kim, Y.S. (2009). Tumor therapy applying membrane-bound form of cytokines. Immune Netw. 9, 158-168. https://doi.org/10.4110/in.2009.9.5.158
  23. Kitano, S., Tsuji, T., Liu, C., Hirschhorn-Cymerman, D., Kyi, C., Mu, Z., Allison, J.P., Gnjatic, S., Yuan, J.D., and Wolchok, J.D. (2013). Enhancement of tumorreactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 1, 235-244. https://doi.org/10.1158/2326-6066.CIR-13-0068
  24. Klebanoff, C.A., Scott, C.D., Leonardi, A.J., Yamamoto, T.N., Cruz, A.C., Ouyang, C., Ramaswamy, M., Roychoudhuri, R., Ji, Y., Eil, R.L., et al. (2016). Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Invest. 126, 318-334. https://doi.org/10.1172/jci81217
  25. Kozlowska, A., Mackiewicz, J., and Mackiewicz, A. (2013). Therapeutic gene modified cell based cancer vaccines. Gene 525, 200-207. https://doi.org/10.1016/j.gene.2013.03.056
  26. Kreiter, S., Vormehr, M., van de Roemer, N., Diken, M., Lower, M., Diekmann, J., Boegel, S., Schrors, B., Vascotto, F., Castle, J.C., et al. (2015). Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692-696. https://doi.org/10.1038/nature14426
  27. Lee, S. and Margolin, K. (2011). Cytokines in cancer immunotherapy. Cancers (Basel) 3, 3856-3893. https://doi.org/10.3390/cancers3043856
  28. Mackay, L.K., Wynne-Jones, E., Freestone, D., Pellicci, D.G., Mielke, L.A., Newman, D.M., Braun, A., Masson, F., Kallies, A., Belz, G.T., et al. (2015). T-box transcription factors combine with the cytokines TGF-${\beta}$ and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101-1111. https://doi.org/10.1016/j.immuni.2015.11.008
  29. Mackiewicz, J. and Mackiewicz, A. (2010). Gene-modified cellular vaccines: technologic aspects and clinical problems. Transpl. Proc. 42, 3287-3292. https://doi.org/10.1016/j.transproceed.2010.07.028
  30. Marshall, N.B., Vong, A.M., Devarajan, P., Brauner, M.D., Kuang, Y., Nayar, R., Schutten, E.A., Castonguay, C.H., Berg, L.J., Nutt, S.L., et al. (2017). NKG2C/E marks the unique cytotoxic CD4 T cell subset, ThCTL, generated by influenza infection. J. Immunol. 198, 1142-1155. https://doi.org/10.4049/jimmunol.1601297
  31. Mocikat, R., Braumuller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., et al. (2003). Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561-569. https://doi.org/10.1016/S1074-7613(03)00264-4
  32. Nelles, M.E., Moreau, J.M., Furlonger, C.L., Berger, A., Medin, J.A., and Paige, C.J. (2014). Murine splenic CD4(+) T cells, induced by innate immune cell interactions and secreted factors, develop antileukemia cytotoxicity. Cancer Immunol. Res. 2, 1113-1124. https://doi.org/10.1158/2326-6066.CIR-13-0208
  33. Ochoa, M.C., Fioravanti, J., Rodriguez, I., Hervas-Stubbs, S., Azpilikueta, A., Mazzolini, G., Gurpide, A., Prieto, J., Pardo, J., Berraondo, P., et al. (2013). Antitumor immunotherapeutic and toxic properties of an HDL-conjugated chimeric IL-15 fusion protein. Cancer Res. 73, 139-149. https://doi.org/10.1158/0008-5472.CAN-12-2660
  34. Pangrazzi, L., Naismith, E., Meryk, A., Keller, M., Jenewein, B., Trieb, K., and Grubeck-Loebenstein, B. (2017). Increased IL-15 production and accumulation of highly differentiated CD8(+) effector/memory T cells in the bone marrow of persons with cytomegalovirus. Front Immunol. 8, 715. https://doi.org/10.3389/fimmu.2017.00715
  35. Phuphanich, S., Wheeler, C.J., Rudnick, J.D., Mazer, M., Wang, H., Nuno, M.A., Richardson, J.E., Fan, X., Ji, J., Chu, R.M., et al. (2013). Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62, 125-135. https://doi.org/10.1007/s00262-012-1319-0
  36. Podhajcer, O.L., Lopez, M.V., and Mazzolini, G. (2007). Cytokine gene transfer for cancer therapy. Cytokine Growth Factor Rev. 18, 183-194. https://doi.org/10.1016/j.cytogfr.2007.01.014
  37. Rhode, P.R., Egan, J.O., Xu, W., Hong, H., Webb, G.M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., et al. (2016). Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 4, 49-60. https://doi.org/10.1158/2326-6066.CIR-15-0093-T
  38. Rubinstein, M.P., Kovar, M., Purton, J.F., Cho, J.H., Boyman, O., Surh, C.D., and Sprent, J. (2006). Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc. Natl. Acad. Sci. U. S. A. 103, 9166-9171. https://doi.org/10.1073/pnas.0600240103
  39. Sarvizadeh, M., Ghasemi, F., Tavakoli, F., Sadat Khatami, S., Razi, E., Sharifi, H., Biouki, N.M., and Taghizadeh, M. (2019). Vaccines for colorectal cancer: an update. J. Cell Biochem. 120, 8815-8828. https://doi.org/10.1002/jcb.28179
  40. Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565-1570. https://doi.org/10.1126/science.1203486
  41. Srivatsan, S., Patel, J.M., Bozeman, E.N., Imasuen, I.E., He, S., Daniels, D., and Selvaraj, P. (2014). Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum. Vaccin. Immunother. 10, 52-63. https://doi.org/10.4161/hv.26568
  42. Tennant, D.A., Duran, R.V., and Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277. https://doi.org/10.1038/nrc2817
  43. Uyl-de Groot, C.A., Vermorken, J.B., Hanna, M.G., Jr., Verboom, P., Groot, M.T., Bonsel, G.J., Meijer, C.J., and Pinedo, H.M. (2005). Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine 23, 2379-2387. https://doi.org/10.1016/j.vaccine.2005.01.015
  44. Volpe, A., Racioppi, M., D'Agostino, D., Cappa, E., Filianoti, A., and Bassi, P.F. (2010). Mitomycin C for the treatment of bladder cancer. Minerva Urol. Nefrol. 62, 133-144.
  45. Willinger, T., Freeman, T., Hasegawa, H., McMichael, A.J., and Callan, M.F. (2005). Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895-5903. https://doi.org/10.4049/jimmunol.175.9.5895
  46. Wrangle, J.M., Velcheti, V., Patel, M.R., Garrett-Mayer, E., Hill, E.G., Ravenel, J.G., Miller, J.S., Farhad, M., Anderton, K., Lindsey, K., et al. (2018). ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694-704. https://doi.org/10.1016/S1470-2045(18)30148-7
  47. Yang, S., Gattinoni, L., Liu, F., Ji, Y., Yu, Z., Restifo, N.P., Rosenberg, S.A., and Morgan, R.A. (2011). In vitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking in vivo antigen-experienced cells. Cancer Immunol. Immunother. 60, 739-749. https://doi.org/10.1007/s00262-011-0977-7

Cited by

  1. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System vol.13, pp.16, 2021, https://doi.org/10.3390/cancers13164039