References
- Alahari, S.V., Dong, S., and Alahari, S.K. (2015). Are macrophages in tumors good targets for novel therapeutic approaches? Mol. Cells 38, 95-104. https://doi.org/10.14348/MOLCELLS.2015.2298
- Bamford, R.N., DeFilippis, A.P., Azimi, N., Kurys, G., and Waldmann, T.A. (1998). The 5' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J. Immunol. 160, 4418-4426.
- Bergado Baez, G., Hernandez Fernandez, D.R., Mazorra Herrera, Z., and Sanchez Ramirez, B. (2018). HER1-based vaccine: simultaneous activation of humoral and cellular immune response. Semin. Oncol. 45, 75-83. https://doi.org/10.1053/j.seminoncol.2018.05.002
- Bern, M.D., Parikh, B.A., Yang, L., Beckman, D.L., Poursine-Laurent, J., and Yokoyama, W.M. (2019). Inducible down-regulation of MHC class I results in natural killer cell tolerance. J. Exp. Med. 216, 99-116. https://doi.org/10.1084/jem.20181076
- Bordon, Y. (2015). T cell memory: new insight on old-timers. Nat. Rev. Immunol. 15, 331. https://doi.org/10.1038/nri3866
- Chaurasiya, S. and Warner, S. (2017). Viroimmunotherapy for colorectal cancer: clinical studies. Biomedicines 5, E11.
- Chiang, C.L., Coukos, G., and Kandalaft, L.E. (2015). Whole tumor antigen vaccines: where are we? Vaccines (Basel) 3, 344-372. https://doi.org/10.3390/vaccines3020344
- Cockerill, P.A., Knoedler, J.J., Frank, I., Tarrell, R., and Karnes, R.J. (2016). Intravesical gemcitabine in combination with mitomycin C as salvage treatment in recurrent non-muscle-invasive bladder cancer. BJU Int. 117, 456-462. https://doi.org/10.1111/bju.13088
- Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P., and Boon, T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135-146. https://doi.org/10.1038/nrc3670
- de Gruijl, T.D., van den Eertwegh, A.J., Pinedo, H.M., and Scheper, R.J. (2008). Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 57, 1569-1577. https://doi.org/10.1007/s00262-008-0536-z
- Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2016). The membranebound form of IL-17A promotes the growth and tumorigenicity of colon cancer cells. Mol. Cells 39, 536-542. https://doi.org/10.14348/molcells.2016.0048
- Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2018). Ectopically expressed membrane-bound form of IL-9 exerts immune-stimulatory effect on CT26 colon carcinoma cells. Immune Netw. 18, e12. https://doi.org/10.4110/in.2018.18.e12
- Drake, A., Kaur, M., Iliopoulou, B.P., Phennicie, R., Hanson, A., and Chen, J. (2016). Interleukins 7 and 15 maintain human T cell proliferative capacity through STAT5 signaling. PLoS One 11, e0166280. https://doi.org/10.1371/journal.pone.0166280
- Dubois, S., Mariner, J., Waldmann, T.A., and Tagaya, Y. (2002). IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537-547. https://doi.org/10.1016/S1074-7613(02)00429-6
- Dubois, S., Patel, H.J., Zhang, M., Waldmann, T.A., and Muller, J.R. (2008). Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J. Immunol. 180, 2099-2106. https://doi.org/10.4049/jimmunol.180.4.2099
- Epardaud, M., Elpek, K.G., Rubinstein, M.P., Yonekura, A.R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J.A., Goldrath, A.W., and Turley, S.J. (2008). Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res. 68, 2972-2983. https://doi.org/10.1158/0008-5472.CAN-08-0045
- Fehniger, T.A. and Caligiuri, M.A. (2001). Interleukin 15: biology and relevance to human disease. Blood 97, 14-32. https://doi.org/10.1182/blood.V97.1.14
- Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D.A., Karantza, V., et al. (2015). Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856-880. https://doi.org/10.15252/embj.201490784
- Holz, L.E., Prier, J.E., Freestone, D., Steiner, T.M., English, K., Johnson, D.N., Mollard, V., Cozijnsen, A., Davey, G.M., Godfrey, D.I., et al. (2018). CD8(+) T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 25, 68-79.e4. https://doi.org/10.1016/j.celrep.2018.08.094
- Hu, Q., Ye, X., Qu, X., Cui, D., Zhang, L., Xu, Z., Wan, H., Zhang, L., and Tao, W. (2018). Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci. Rep. 8, 7675. https://doi.org/10.1038/s41598-018-25987-4
- Kim, P.S., Kwilas, A.R., Xu, W., Alter, S., Jeng, E.K., Wong, H.C., Schlom, J., and Hodge, J.W. (2016). IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7, 16130-16145. https://doi.org/10.18632/oncotarget.7470
- Kim, Y.S. (2009). Tumor therapy applying membrane-bound form of cytokines. Immune Netw. 9, 158-168. https://doi.org/10.4110/in.2009.9.5.158
- Kitano, S., Tsuji, T., Liu, C., Hirschhorn-Cymerman, D., Kyi, C., Mu, Z., Allison, J.P., Gnjatic, S., Yuan, J.D., and Wolchok, J.D. (2013). Enhancement of tumorreactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 1, 235-244. https://doi.org/10.1158/2326-6066.CIR-13-0068
- Klebanoff, C.A., Scott, C.D., Leonardi, A.J., Yamamoto, T.N., Cruz, A.C., Ouyang, C., Ramaswamy, M., Roychoudhuri, R., Ji, Y., Eil, R.L., et al. (2016). Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Invest. 126, 318-334. https://doi.org/10.1172/jci81217
- Kozlowska, A., Mackiewicz, J., and Mackiewicz, A. (2013). Therapeutic gene modified cell based cancer vaccines. Gene 525, 200-207. https://doi.org/10.1016/j.gene.2013.03.056
- Kreiter, S., Vormehr, M., van de Roemer, N., Diken, M., Lower, M., Diekmann, J., Boegel, S., Schrors, B., Vascotto, F., Castle, J.C., et al. (2015). Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692-696. https://doi.org/10.1038/nature14426
- Lee, S. and Margolin, K. (2011). Cytokines in cancer immunotherapy. Cancers (Basel) 3, 3856-3893. https://doi.org/10.3390/cancers3043856
-
Mackay, L.K., Wynne-Jones, E., Freestone, D., Pellicci, D.G., Mielke, L.A., Newman, D.M., Braun, A., Masson, F., Kallies, A., Belz, G.T., et al. (2015). T-box transcription factors combine with the cytokines TGF-
${\beta}$ and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101-1111. https://doi.org/10.1016/j.immuni.2015.11.008 - Mackiewicz, J. and Mackiewicz, A. (2010). Gene-modified cellular vaccines: technologic aspects and clinical problems. Transpl. Proc. 42, 3287-3292. https://doi.org/10.1016/j.transproceed.2010.07.028
- Marshall, N.B., Vong, A.M., Devarajan, P., Brauner, M.D., Kuang, Y., Nayar, R., Schutten, E.A., Castonguay, C.H., Berg, L.J., Nutt, S.L., et al. (2017). NKG2C/E marks the unique cytotoxic CD4 T cell subset, ThCTL, generated by influenza infection. J. Immunol. 198, 1142-1155. https://doi.org/10.4049/jimmunol.1601297
- Mocikat, R., Braumuller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., et al. (2003). Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561-569. https://doi.org/10.1016/S1074-7613(03)00264-4
- Nelles, M.E., Moreau, J.M., Furlonger, C.L., Berger, A., Medin, J.A., and Paige, C.J. (2014). Murine splenic CD4(+) T cells, induced by innate immune cell interactions and secreted factors, develop antileukemia cytotoxicity. Cancer Immunol. Res. 2, 1113-1124. https://doi.org/10.1158/2326-6066.CIR-13-0208
- Ochoa, M.C., Fioravanti, J., Rodriguez, I., Hervas-Stubbs, S., Azpilikueta, A., Mazzolini, G., Gurpide, A., Prieto, J., Pardo, J., Berraondo, P., et al. (2013). Antitumor immunotherapeutic and toxic properties of an HDL-conjugated chimeric IL-15 fusion protein. Cancer Res. 73, 139-149. https://doi.org/10.1158/0008-5472.CAN-12-2660
- Pangrazzi, L., Naismith, E., Meryk, A., Keller, M., Jenewein, B., Trieb, K., and Grubeck-Loebenstein, B. (2017). Increased IL-15 production and accumulation of highly differentiated CD8(+) effector/memory T cells in the bone marrow of persons with cytomegalovirus. Front Immunol. 8, 715. https://doi.org/10.3389/fimmu.2017.00715
- Phuphanich, S., Wheeler, C.J., Rudnick, J.D., Mazer, M., Wang, H., Nuno, M.A., Richardson, J.E., Fan, X., Ji, J., Chu, R.M., et al. (2013). Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62, 125-135. https://doi.org/10.1007/s00262-012-1319-0
- Podhajcer, O.L., Lopez, M.V., and Mazzolini, G. (2007). Cytokine gene transfer for cancer therapy. Cytokine Growth Factor Rev. 18, 183-194. https://doi.org/10.1016/j.cytogfr.2007.01.014
- Rhode, P.R., Egan, J.O., Xu, W., Hong, H., Webb, G.M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., et al. (2016). Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 4, 49-60. https://doi.org/10.1158/2326-6066.CIR-15-0093-T
- Rubinstein, M.P., Kovar, M., Purton, J.F., Cho, J.H., Boyman, O., Surh, C.D., and Sprent, J. (2006). Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc. Natl. Acad. Sci. U. S. A. 103, 9166-9171. https://doi.org/10.1073/pnas.0600240103
- Sarvizadeh, M., Ghasemi, F., Tavakoli, F., Sadat Khatami, S., Razi, E., Sharifi, H., Biouki, N.M., and Taghizadeh, M. (2019). Vaccines for colorectal cancer: an update. J. Cell Biochem. 120, 8815-8828. https://doi.org/10.1002/jcb.28179
- Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565-1570. https://doi.org/10.1126/science.1203486
- Srivatsan, S., Patel, J.M., Bozeman, E.N., Imasuen, I.E., He, S., Daniels, D., and Selvaraj, P. (2014). Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum. Vaccin. Immunother. 10, 52-63. https://doi.org/10.4161/hv.26568
- Tennant, D.A., Duran, R.V., and Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277. https://doi.org/10.1038/nrc2817
- Uyl-de Groot, C.A., Vermorken, J.B., Hanna, M.G., Jr., Verboom, P., Groot, M.T., Bonsel, G.J., Meijer, C.J., and Pinedo, H.M. (2005). Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine 23, 2379-2387. https://doi.org/10.1016/j.vaccine.2005.01.015
- Volpe, A., Racioppi, M., D'Agostino, D., Cappa, E., Filianoti, A., and Bassi, P.F. (2010). Mitomycin C for the treatment of bladder cancer. Minerva Urol. Nefrol. 62, 133-144.
- Willinger, T., Freeman, T., Hasegawa, H., McMichael, A.J., and Callan, M.F. (2005). Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895-5903. https://doi.org/10.4049/jimmunol.175.9.5895
- Wrangle, J.M., Velcheti, V., Patel, M.R., Garrett-Mayer, E., Hill, E.G., Ravenel, J.G., Miller, J.S., Farhad, M., Anderton, K., Lindsey, K., et al. (2018). ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694-704. https://doi.org/10.1016/S1470-2045(18)30148-7
- Yang, S., Gattinoni, L., Liu, F., Ji, Y., Yu, Z., Restifo, N.P., Rosenberg, S.A., and Morgan, R.A. (2011). In vitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking in vivo antigen-experienced cells. Cancer Immunol. Immunother. 60, 739-749. https://doi.org/10.1007/s00262-011-0977-7
Cited by
- Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System vol.13, pp.16, 2021, https://doi.org/10.3390/cancers13164039