DOI QR코드

DOI QR Code

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device

미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어

  • Jeong, Heon-Ho (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 정헌호 (전남대학교 공학대학 화공생명공학과)
  • Received : 2019.10.07
  • Accepted : 2019.10.30
  • Published : 2019.12.31

Abstract

Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

단분산성 마이크로입자는 약물캡슐화 및 전달을 위한 다양한 응용분야에서 사용되고 있다. 미세유체장치는 매우 균일한 액적을 생산할 수 있는 중요한 장치이며 이 액적은 단분산성 마이크로입자를 생성할 수 있는 중요한 템플레이트(template)로의 역할을 한다. 미세유체장치는 마이크론 크기의 채널로 구성되어 표면장력과 점성력 간의 균형을 정교하게 조절할 수 있으며, 이는 단분산성 액적을 형성하는 필수적인 기술 중의 하나이다. 본 연구는 유동집적채널 기반의 미세유체장치에서 매우 균일한 polycaprolactone (PCL) 생분해성 고분자 입자를 제조하는 방법을 제안한다. 유동집적채널 기반의 미세유체장치는 polydimethylsiloxane (PDMS) 기반의 소프트리소그래피(soft-lithography) 방법을 통해 제작된다. 액적 생성에서 중요한 요소는 마이크로 액적의 크기와 단분산성을 조절하는 것이다. 이를 위해, 본 연구에서는 이 미세유체장치에서 오일용액 분산상과 수용액 연속상의 부피유속을 제어하여 단분산성 액적 형성 조건을 최적화하였다. 그 결과 균일한 액적을 형성할 수 있는 dripping 영역에 대한 최척화된 유속조건을 확인하였다. 그런 다음, 마이크로입자를 생성하기 위해 PCL 고분자를 포함한 액적을 장치에서 형성한 후 용매의 증발에 의해 입자화 하였다. 입자의 크기는 부피유속과 미세유체채널의 크기에 의해 조절되며 입자의 단분산도는 변동계수(coefficient of variation, CV)값이 5% 이하로 제어될 수 있다.

Keywords

References

  1. Zhao, C. X., "Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery", Adv. Drug. Deliver. Rev., 65(11-12), 1420-1446 (2013). https://doi.org/10.1016/j.addr.2013.05.009
  2. Ganan-Calvo, A. M., Montanero, J. M., Martin-Banderas, L., and Flores-Mosquera, M., "Building Functional Materials for Health Care and Pharmacy from Microfluidic Principles and Flow Focusing", Adv. Drug. Deliver. Rev., 65(11-12), 1447-1469 (2013). https://doi.org/10.1016/j.addr.2013.08.003
  3. Chou, W. L., Lee, P. Y., Yang, C. L., Huang, W. Y., and Lin, Y. S., "Recent Advances in Applications of Droplet Microfluidics", Micromachines, 6(9), 1249-1271 (2015). https://doi.org/10.3390/mi6091249
  4. Watanabe, T., Ono, T., and Kimura, Y., "Continuous Fabrication of Monodisperse Polylactide Microspheres by Droplet-to-Particle Technology using Microfluidic Emulsification and Emulsion-Solvent Diffusion", Soft Matter, 7(21), 9894-9897 (2011). https://doi.org/10.1039/c1sm05910f
  5. Majedi, F. S., Hasani-Sadrabadi, M. M., Emami, S. H., Shokrgozar, M. A., VanDersarl, J. J., Dashtimoghadam, E., Bertsch, A., and Renaud, P., "Microfluidic Assisted Self-Assembly of Chitosan Based Nanoparticles as Drug Delivery Agents", Lab Chip, 13(2), 204-207 (2013). https://doi.org/10.1039/C2LC41045A
  6. Anna, S. L., Bontoux, N., and Stone, H. A., "Formation of Dispersions using "Flow Focusing" in Microchannels", Appl. Phys. Lett., 82(3), 364-366 (2003). https://doi.org/10.1063/1.1537519
  7. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device", Science, 308(5721), 537-541 (2005). https://doi.org/10.1126/science.1109164
  8. Utada, A. S., Fernandez-Nieves, A., Stone, H. A., and Weitz, D. A., "Dripping to Jetting Transitions in Coflowing Liquid Streams", Phys. Rev. Lett., 99(9), 094502 (2007). https://doi.org/10.1103/PhysRevLett.99.094502
  9. Cheng, X. J., Liu, R. L., and He, Y. H., "A Simple Method for the Preparation of Monodisperse Protein-Loaded Microspheres with High Encapsulation Efficiencies", Eur. J. Pharm. Biopharm., 76(3), 336-341 (2010). https://doi.org/10.1016/j.ejpb.2010.07.013
  10. He, T. X., Liang, Q. L., Zhang, K., Mu, X., Luo, T. T., Wang, Y. M., and Luo, G. A., "A Modified Microfluidic Chip for Fabrication of Paclitaxel-Loaded Poly(l-lactic acid) Microspheres", Microfluid. Nanofluid., 10(6), 1289-1298 (2011). https://doi.org/10.1007/s10404-010-0760-7
  11. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C., and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors", J. Am. Chem. Soc., 127(22), 8058-8063 (2005). https://doi.org/10.1021/ja042494w
  12. Castro-Hernandez, E., Gundabala, V., Fernandez-Nieves, A., and Gordillo, J. M., "Scaling the Drop Size in Coflow Experiments", New J. Phys., 11, (2009).
  13. He, Y. H., "Application of Flow-Focusing to the Break-up of an Emulsion Jet for the Production of Matrix-Structured Microparticles", Chem. Eng. Sci., 63(9), 2500-2507 (2008). https://doi.org/10.1016/j.ces.2008.02.008
  14. Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., and Ganan-Calvo, A. M., "Global Stability of the Focusing Effect of Fluid Jet Flows", Phys. Rev. E, 83(3), (2011).
  15. Lee, J. N., Park, C., and Whitesides, G. M., "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices", Anal. Chem., 75(23), 6544-6554 (2003). https://doi.org/10.1021/ac0346712