DOI QR코드

DOI QR Code

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors

하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동

  • Shin, Seung-Il (Department of Electrical Engineering, Myongji University) ;
  • Lee, Byung-Gwan (R&D Center, EUROCELL) ;
  • Ha, Min-Woo (Department of Electrical Engineering, Myongji University) ;
  • An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 신승일 (명지대학교 전기공학과) ;
  • 이병관 ((주)유로셀 연구소) ;
  • 하민우 (명지대학교 전기공학과) ;
  • 안건형 (경남과학기술대학교 에너지공학과)
  • Received : 2019.09.09
  • Accepted : 2019.10.24
  • Published : 2019.12.27

Abstract

The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

Keywords

References

  1. P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014). https://doi.org/10.1126/science.1249625
  2. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  3. G.-H. An, S. N. Cha and J. I. Sohn, Appl. Surf. Sci., 467, 1157 (2019). https://doi.org/10.1016/j.apsusc.2018.10.247
  4. G.-H. An, S.N. Cha and H.-J. Ahn, Appl. Surf. Sci., 478, 435 (2019). https://doi.org/10.1016/j.apsusc.2019.01.280
  5. G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019). https://doi.org/10.1016/j.apsusc.2018.12.120
  6. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  7. G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Mater. Chem. A, 5, 19714 (2017). https://doi.org/10.1039/C7TA06345H
  8. W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia and J. Liu, Adv. Sci., 4, 1600539 (2017) https://doi.org/10.1002/advs.201600539
  9. Y.-P. Lin and N.-L. Wu, J. Power Sources, 196, 851 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.066
  10. O. Hanna, S. Luski, T. Brousse and D. Aurbach, J. Power Sources, 354, 148 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.039
  11. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  12. G.-H. An, H. Kim and H.-J. Ahn, J. Ind. Eng. Chem., 68, 146 (2018). https://doi.org/10.1016/j.jiec.2018.07.039
  13. G.-H. An, D.-Y. Lee and H.-J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017). https://doi.org/10.1021/acsami.7b01286
  14. G.-H. An, Y.-G. Lee and H.-J. Ahn, J. Alloys Compd., 746, 177 (2018). https://doi.org/10.1016/j.jallcom.2018.02.281
  15. G.-H. An, H. Kim and H.-J. Ahn, ACS Appl. Mater. Interfaces, 10, 6235 (2018). https://doi.org/10.1021/acsami.7b15950
  16. J. Zeng, M.i Li, X. Li, C. Chen, D. Xiong, L. Dong, D. Li, A. Lushington and X. Sun, Appl. Surf. Sci., 317, 884 (2014). https://doi.org/10.1016/j.apsusc.2014.08.034