DOI QR코드

DOI QR Code

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat

흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해

  • Im, Kyung-Hoan (Division of Life Sciences, Incheon National University) ;
  • Baek, Seung-A (Division of Life Sciences, Incheon National University) ;
  • Choi, Jae-hyuk (Division of Life Sciences, Incheon National University) ;
  • Lee, Tae-Soo (Division of Life Sciences, Incheon National University)
  • Received : 2019.12.02
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

흰구름버섯 (Trametes hirsuta)의 균사체는 CR, CV, RBBR 등 방향족 염료가 함유된 고체와 액체 배지에서 이들 염료를 효과적으로 탈색하였으나 MB의 탈색은 저조하였다. 각각 CR, MB, CV 및 RBBR 등 4종류의 염료가 함유된 액체배지에서 흰구름버섯의 균사체를 10일 간 배양했을 때 laccase, LiP, MnP 등 세 종류의 효소를 모두 생산하였으며 이들 효소 중 laccase의 활성도가 가장 높았으며 LiP와 MnP의 활성도laccase에 비해 낮았다. 따라서 흰구름버섯 균사체에 의한 방향족 염료의 탈색에는 laccase가 주로 사용되고 LiP나 MnP는 보조적인 역할을 하는 것으로 사료된다. 또한 비스페놀 A가 0, 25, 50, 100, 200 ppm의 농도로 함유된 PDA 배지에 균사체를 접종하여 배양한 결과 비스페놀 A의 농도가 증가함에 따라 균사체의 생장은 농도 의존적으로 저해되는 것으로 나타났다. 또한 비스페놀 A가 100 ppm 함유된 YMG 액체배지에 균사체를 접종하고 비스페놀 A의 분해율을 측정한 결과 배양 12시간 후 72.3%, 배양 24시간 후 95.3%, 그리고 배양 36시간 후에는 100% 분해된 것으로 나타났다. 따라서 본 연구 결과는 우리나라의 산업 활동 과정에서 생산되고 자연계로 배출되어 생물체에 큰 피해를 주는 합성염료와 내분비계 장애물질인 비스페놀 A를 친환경적으로 제거할 수 있는 기술의 개발에 도움이 될 수 있을 것으로 사료된다.

Keywords

References

  1. Baek SA, Choi JH, Lee TS, Im KH. 2015. Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor. J Mushrooms 13(1): 63-67. https://doi.org/10.14480/JM.2015.13.1.63
  2. Banat IM, Nigam P, Singh D, Marchant R. 1996. Microbial decolorization of textile-dye containing effluents: A review. Bioresour Technol 58: 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  3. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-250. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Bumpus JA, Tien M, Wright D, Aust SD. 1985. Oxidation of persistent environmental pollutants by a white-rot fungus. Science 228: 1434-1436. https://doi.org/10.1126/science.3925550
  5. Danzo BJ. 1998. The effects of environmental hormones on reproduction. Cell Mol Life Sci 11: 1249-1264. https://doi.org/10.1007/s000180050251
  6. DeSouza-Ticlo D. 2008. The lignin-degrading enzyme, laccase from marine fungi: biochemical and molecular approaches. Ph. D. Thesis. Goa University. pp. 335. Goa, India.
  7. Field J, de Jong E, Feijoo G, de Bont J. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11: 44-49. https://doi.org/10.1016/0167-7799(93)90121-O
  8. Fu Y, Viraraghavan T. 2001. Fungal decolorization of dye waste waters: A review. Bioresour Technol 79: 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1
  9. Gu BJ, Kim MS, Kim YM, Kim SW, Choi WH, Lee MW, Cho HJ, Lee TS. 2012. Decolorization of synthetic dyes and ligninolytic enzymes production by white rot fungi. Korean J Mycol 40(2): 98-103. https://doi.org/10.4489/KJM.2012.40.2.98
  10. Hatakka A. 1994. Lignin-modifying enzymes from selected white-rot fungi: Production and role in lignin degradation. FEMS Microbiol Rev 13: 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  11. Hong CY. 2010. Biodegradation of polychlorinated biphenyls by white rot fungus, Ceriporia sp. ZLP-2010. M.S. Thesis. Seoul National University. Seoul, Korea.
  12. Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW, Yang HS, Lee TS. 2008. Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiol 36: 114-120. https://doi.org/10.4489/MYCO.2008.36.2.114
  13. Jin XC, Liu GQ, Xu ZH, Tao WY. 2007. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74: 239-243. https://doi.org/10.1007/s00253-006-0658-1
  14. Kang AR, Choi HT, Song HG. 2008. Optimization of bisphenol A biodegradation by Trametes versicolor. Korean J Microbiol 44(1): 37-42.
  15. Kirk TK, Farrell RL. 1987. Enzymatic combustion: The microbial degradation of lignin. Annu Rev Microbiol 41: 465-501. https://doi.org/10.1146/annurev.mi.41.100187.002341
  16. Kum EJ, Ryu HY, Kwon GS, Shon YH. 2007. Spectrophotometric determination of bisphenol A by complexation with ferricyanide and ferric chloride solution. J Life Sci 17(2): 266-271. https://doi.org/10.5352/JLS.2007.17.2.266
  17. Monties B, Fukushima K. 2001. Occurrence, function and biosynthesis of lignins. In M. Hofrichter & A. Steinbuchel. (ed.), Biopolymers Part 1: Lignin, Humic Substances and Coal, Wiley-VCH, Weinheim, Germany.
  18. Peng SY, Liu LP, Zhang XQ, Heinrich J, Zhang J, Schramm KW. 2015. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environ Health 14: 19. https://doi.org/10.1186/s12940-015-0004-0
  19. Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC. 2005. Removal of dyes from the effluent of textile and dye stuff manufacturing industry: A review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35: 219-238. https://doi.org/10.1080/10643380590917932
  20. Shin EH, Choi HT, Song HG. 2007. Biodegradation of endocrine disrupting bisphenol A by white rot fungus Irpex lacteus. J Microbiol Biotechnol 17(7): 1147-1151.
  21. Singh H. 2006. Mycoremediation: Fungal bioremediation. John Wiley & Sons. Inc. New Jersey, USA. pp. 592.
  22. Vijayalakshmi V, Senthilkumar P, Mophin-Kani K, Sivamani S, Sivarajasekar N, Vasantharaj S. 2018. Bio-degradation of bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: Kinetic modeling and process optimization. J Rad Res Appl Sci 11: 56-65.