References
- Tasher D and Dalal I (2012) The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet 5, 67-80 https://doi.org/10.2147/TACG.S18693
- Powell EJ, Cunnick JE and Tuggle CK (2017) SCID pigs: An emerging large animal NK model. J Rare Dis Res Treat 2, 1-6
- Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22, 625-655 https://doi.org/10.1146/annurev.immunol.22.012703.104614
- Cossu F (2010) Genetics of SCID. Ital J Pediatr 36, 76 https://doi.org/10.1186/1824-7288-36-76
- Macchi P, Villa A, Giliani S et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65-68 https://doi.org/10.1038/377065a0
- Noguchi M, Yi H, Rosenblatt HM et al (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147-157 https://doi.org/10.1016/0092-8674(93)90167-O
- Russell SM, Tayebi N, Nakajima H et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797-800 https://doi.org/10.1126/science.270.5237.797
- Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379-382 https://doi.org/10.1126/science.1631559
- Kondo M, Takeshita T, Ishii N et al (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874-1877 https://doi.org/10.1126/science.8266076
- Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877-1880 https://doi.org/10.1126/science.8266077
- Giri JG, Ahdieh M, Eisenman J et al (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13, 2822-2830 https://doi.org/10.1002/j.1460-2075.1994.tb06576.x
- Asao H, Okuyama C, Kumaki S et al (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1-5 https://doi.org/10.4049/jimmunol.167.1.1
- Colonna M (2018) Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104-1117 https://doi.org/10.1016/j.immuni.2018.05.013
- Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nat Rev Immunol 1, 200-208 https://doi.org/10.1038/35105066
- Sugamura K, Asao H, Kondo M et al (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14, 179-205 https://doi.org/10.1146/annurev.immunol.14.1.179
- Malek TR and Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4, 665-674 https://doi.org/10.1038/nri1435
- Ghoreschi K, Laurence A and O'Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228, 273-287 https://doi.org/10.1111/j.1600-065X.2008.00754.x
- Peter HH, Friedrich W, Dopfer R et al (1983) NK cell function in severe combined immunodeficiency (SCID): evidence of a common T and NK cell defect in some but not all SCID patients. J Immunol 131, 2332-2339
- Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56, 27-150 https://doi.org/10.1016/S0065-2776(08)60450-2
- Oettinger MA (1999) V(D)J recombination: on the cutting edge. Curr Opin Cell Biol 11, 325-329 https://doi.org/10.1016/S0955-0674(99)80044-1
- Villa A, Sobacchi C, Notarangelo LD et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97, 81-88 https://doi.org/10.1182/blood.V97.1.81
- de Villartay JP (2015) Congenital defects in V(D)J recombination. Br Med Bull 114, 157-167 https://doi.org/10.1093/bmb/ldv020
- Wiler R, Leber R, Moore BB, VanDyk LF, Perryman LE and Meek K (1995) Equine severe combined immunodeficiency: a defect in V(D)J recombination and DNAdependent protein kinase activity. Proc Natl Acad Sci U S A 92, 11485-11489 https://doi.org/10.1073/pnas.92.25.11485
- Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877 https://doi.org/10.1016/0092-8674(92)90030-G
- Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867 https://doi.org/10.1016/0092-8674(92)90029-C
- Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27, 703-711 https://doi.org/10.1096/fj.12-219907
- Song J, Zhong J, Guo X et al (2013) Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23, 1059-1062 https://doi.org/10.1038/cr.2013.85
- Wang Y, Fan N, Song J et al (2014) Generation of knockout rabbits using transcription activator-like effector nucleases. Cell Regen (Lond) 3, 3 https://doi.org/10.1186/2045-9769-3-3
- Huang J, Guo X, Fan N et al (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193, 1496-1503 https://doi.org/10.4049/jimmunol.1400915
- Schuetz C, Neven B, Dvorak CC et al (2014) SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 123, 281-289 https://doi.org/10.1182/blood-2013-01-476432
- Buckley RH, Schiff RI, Schiff SE et al (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130, 378-387 https://doi.org/10.1016/S0022-3476(97)70199-9
- Geha RS, Notarangelo LD, Casanova JL et al (2007) Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 120, 776-794 https://doi.org/10.1016/j.jaci.2007.08.053
- Winandy S, Wu L, Wang JH and Georgopoulos K (1999) Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190, 1039-1048 https://doi.org/10.1084/jem.190.8.1039
- Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6, 728-740 https://doi.org/10.1038/nri1939
- Smith-Garvin JE, Koretzky GA and Jordan MS (2009) T cell activation. Annu Rev Immunol 27, 591-619 https://doi.org/10.1146/annurev.immunol.021908.132706
- Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G and Beverley PC (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166, 1308-1313 https://doi.org/10.4049/jimmunol.166.2.1308
- Otsu M, Steinberg M, Ferrand C et al (2002) Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 100, 1248-1256 https://doi.org/10.1182/blood-2002-01-0247
- Legname G, Seddon B, Lovatt M et al (2000) Inducible expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity 12, 537-546 https://doi.org/10.1016/S1074-7613(00)80205-8
- Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102, 421-429 https://doi.org/10.1172/JCI3205
- Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12, 449-457 https://doi.org/10.1093/intimm/12.4.449
- Rathmell JC and Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 Suppl, S97-107 https://doi.org/10.1016/S0092-8674(02)00704-3
- Hershfield MS (2003) Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15, 571-577 https://doi.org/10.1016/S0952-7915(03)00104-3
- Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41, 101-105 https://doi.org/10.1038/ng.265
- Lagresle-Peyrou C, Six EM, Picard C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41, 106-111 https://doi.org/10.1038/ng.278
- Noma T (2005) Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest 52, 127-136 https://doi.org/10.2152/jmi.52.127
- Panayiotou C, Solaroli N, Xu Y, Johansson M and Karlsson A (2011) The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433, 527-534 https://doi.org/10.1042/BJ20101443
- Yagi H, Matsumoto M, Nakamura M et al (1996) Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse. J Immunol 157, 3412-3419
- Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin 1A is mutant in a thymic egressdeficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9, 1307-1315 https://doi.org/10.1038/ni.1662
- Mueller P, Massner J, Jayachandran R et al (2008) Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9, 424-431 https://doi.org/10.1038/ni1570
- Haraldsson MK, Louis-Dit-Sully CA, Lawson BR et al (2008) The lupus-related Lmb3 locus contains a diseasesuppressing Coronin-1A gene mutation. Immunity 28, 40-51 https://doi.org/10.1016/j.immuni.2007.11.023
- Shiow LR, Paris K, Akana MC, Cyster JG, Sorensen RU and Puck JM (2009) Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol 131, 24-30 https://doi.org/10.1016/j.clim.2008.11.002
- Moshous D, Martin E, Carpentier W et al (2013) Wholeexome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131, 1594-1603 https://doi.org/10.1016/j.jaci.2013.01.042
- Mace EM and Orange JS (2014) Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A 111, 6708-6713 https://doi.org/10.1073/pnas.1314975111
- McKusick VA, Eldridge R, Hostetler JA, Ruangwit U and Egeland JA (1965) Dwarfism in the amish. Ii. cartilage-hair hypoplasia. Bull Johns Hopkins Hosp 116, 285-326
- Thiel CT and Rauch A (2011) The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 25, 131-142 https://doi.org/10.1016/j.beem.2010.08.004
- Ryu J, Prather RS and Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9, 5 https://doi.org/10.1186/s40104-017-0228-7
- Gaj T, Gersbach CA and Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
- Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26, 702-708 https://doi.org/10.1038/nbt1409
- Meyer M, de Angelis MH, Wurst W and Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107, 15022-15026 https://doi.org/10.1073/pnas.1009424107
- Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 https://doi.org/10.1126/science.1172447
- Zschemisch NH, Glage S, Wedekind D et al (2012) Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 13, 60 https://doi.org/10.1186/1471-2172-13-60
- Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108, 12013-12017 https://doi.org/10.1073/pnas.1106422108
- Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21, 979-982 https://doi.org/10.1038/cr.2011.70
- Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35 https://doi.org/10.1111/xen.12019
- Whyte JJ, Zhao J, Wells KD et al (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78, 2 https://doi.org/10.1002/mrd.21271
- Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82 https://doi.org/10.1093/nar/gkr218
- Hendriks WT, Jiang X, Daheron L and Cowan CA (2015) TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34, 5B 3 1-25
- Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734 https://doi.org/10.1038/nbt.1927
- Choi YJ, Kim E, Reza A et al (2017) Recombination activating gene-2(null) severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget 8, 69398-69407 https://doi.org/10.18632/oncotarget.20626
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Hai T, Teng F, Guo R, Li W and Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372-375 https://doi.org/10.1038/cr.2014.11
- Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91, 78 https://doi.org/10.1095/biolreprod.114.121723
- Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307 https://doi.org/10.1126/science.aan4187
- Suzuki S, Iwamoto M, Saito Y et al (2012) Il2rg genetargeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753-758 https://doi.org/10.1016/j.stem.2012.04.021
- Bauer TR Jr, Adler RL and Hickstein DD (2009) Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 50, 168-186 https://doi.org/10.1093/ilar.50.2.168
- Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8, e76478 https://doi.org/10.1371/journal.pone.0076478
- Kang JT, Cho B, Ryu J et al (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14, 74 https://doi.org/10.1186/s12958-016-0206-5
- Lee K, Kwon DN, Ezashi T et al (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci U S A 111, 7260-7265 https://doi.org/10.1073/pnas.1406376111
- Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 https://doi.org/10.1186/1471-2164-14-332
- Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20, 50-57 https://doi.org/10.1016/j.tim.2011.11.002
- Ito R, Takahashi T, Katano I and Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9, 208-214 https://doi.org/10.1038/cmi.2012.2
- Ito T, Sendai Y, Yamazaki S et al (2014) Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 9, e113833 https://doi.org/10.1371/journal.pone.0113833