Erratum to: Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) ;
  • Hong, Kwonho (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) ;
  • Kim, Jin Hoi (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) ;
  • Choi, Youngsok (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
  • Received : 2019.10.04
  • Published : 2019.12.31

Abstract

Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Keywords

References

  1. Tasher D and Dalal I (2012) The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet 5, 67-80 https://doi.org/10.2147/TACG.S18693
  2. Powell EJ, Cunnick JE and Tuggle CK (2017) SCID pigs: An emerging large animal NK model. J Rare Dis Res Treat 2, 1-6
  3. Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22, 625-655 https://doi.org/10.1146/annurev.immunol.22.012703.104614
  4. Cossu F (2010) Genetics of SCID. Ital J Pediatr 36, 76 https://doi.org/10.1186/1824-7288-36-76
  5. Macchi P, Villa A, Giliani S et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65-68 https://doi.org/10.1038/377065a0
  6. Noguchi M, Yi H, Rosenblatt HM et al (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147-157 https://doi.org/10.1016/0092-8674(93)90167-O
  7. Russell SM, Tayebi N, Nakajima H et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797-800 https://doi.org/10.1126/science.270.5237.797
  8. Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379-382 https://doi.org/10.1126/science.1631559
  9. Kondo M, Takeshita T, Ishii N et al (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874-1877 https://doi.org/10.1126/science.8266076
  10. Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877-1880 https://doi.org/10.1126/science.8266077
  11. Giri JG, Ahdieh M, Eisenman J et al (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13, 2822-2830 https://doi.org/10.1002/j.1460-2075.1994.tb06576.x
  12. Asao H, Okuyama C, Kumaki S et al (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1-5 https://doi.org/10.4049/jimmunol.167.1.1
  13. Colonna M (2018) Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104-1117 https://doi.org/10.1016/j.immuni.2018.05.013
  14. Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nat Rev Immunol 1, 200-208 https://doi.org/10.1038/35105066
  15. Sugamura K, Asao H, Kondo M et al (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14, 179-205 https://doi.org/10.1146/annurev.immunol.14.1.179
  16. Malek TR and Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4, 665-674 https://doi.org/10.1038/nri1435
  17. Ghoreschi K, Laurence A and O'Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228, 273-287 https://doi.org/10.1111/j.1600-065X.2008.00754.x
  18. Peter HH, Friedrich W, Dopfer R et al (1983) NK cell function in severe combined immunodeficiency (SCID): evidence of a common T and NK cell defect in some but not all SCID patients. J Immunol 131, 2332-2339
  19. Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56, 27-150 https://doi.org/10.1016/S0065-2776(08)60450-2
  20. Oettinger MA (1999) V(D)J recombination: on the cutting edge. Curr Opin Cell Biol 11, 325-329 https://doi.org/10.1016/S0955-0674(99)80044-1
  21. Villa A, Sobacchi C, Notarangelo LD et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97, 81-88 https://doi.org/10.1182/blood.V97.1.81
  22. de Villartay JP (2015) Congenital defects in V(D)J recombination. Br Med Bull 114, 157-167 https://doi.org/10.1093/bmb/ldv020
  23. Wiler R, Leber R, Moore BB, VanDyk LF, Perryman LE and Meek K (1995) Equine severe combined immunodeficiency: a defect in V(D)J recombination and DNAdependent protein kinase activity. Proc Natl Acad Sci U S A 92, 11485-11489 https://doi.org/10.1073/pnas.92.25.11485
  24. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877 https://doi.org/10.1016/0092-8674(92)90030-G
  25. Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867 https://doi.org/10.1016/0092-8674(92)90029-C
  26. Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27, 703-711 https://doi.org/10.1096/fj.12-219907
  27. Song J, Zhong J, Guo X et al (2013) Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23, 1059-1062 https://doi.org/10.1038/cr.2013.85
  28. Wang Y, Fan N, Song J et al (2014) Generation of knockout rabbits using transcription activator-like effector nucleases. Cell Regen (Lond) 3, 3 https://doi.org/10.1186/2045-9769-3-3
  29. Huang J, Guo X, Fan N et al (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193, 1496-1503 https://doi.org/10.4049/jimmunol.1400915
  30. Schuetz C, Neven B, Dvorak CC et al (2014) SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 123, 281-289 https://doi.org/10.1182/blood-2013-01-476432
  31. Buckley RH, Schiff RI, Schiff SE et al (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130, 378-387 https://doi.org/10.1016/S0022-3476(97)70199-9
  32. Geha RS, Notarangelo LD, Casanova JL et al (2007) Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 120, 776-794 https://doi.org/10.1016/j.jaci.2007.08.053
  33. Winandy S, Wu L, Wang JH and Georgopoulos K (1999) Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190, 1039-1048 https://doi.org/10.1084/jem.190.8.1039
  34. Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6, 728-740 https://doi.org/10.1038/nri1939
  35. Smith-Garvin JE, Koretzky GA and Jordan MS (2009) T cell activation. Annu Rev Immunol 27, 591-619 https://doi.org/10.1146/annurev.immunol.021908.132706
  36. Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G and Beverley PC (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166, 1308-1313 https://doi.org/10.4049/jimmunol.166.2.1308
  37. Otsu M, Steinberg M, Ferrand C et al (2002) Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 100, 1248-1256 https://doi.org/10.1182/blood-2002-01-0247
  38. Legname G, Seddon B, Lovatt M et al (2000) Inducible expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity 12, 537-546 https://doi.org/10.1016/S1074-7613(00)80205-8
  39. Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102, 421-429 https://doi.org/10.1172/JCI3205
  40. Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12, 449-457 https://doi.org/10.1093/intimm/12.4.449
  41. Rathmell JC and Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 Suppl, S97-107 https://doi.org/10.1016/S0092-8674(02)00704-3
  42. Hershfield MS (2003) Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15, 571-577 https://doi.org/10.1016/S0952-7915(03)00104-3
  43. Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41, 101-105 https://doi.org/10.1038/ng.265
  44. Lagresle-Peyrou C, Six EM, Picard C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41, 106-111 https://doi.org/10.1038/ng.278
  45. Noma T (2005) Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest 52, 127-136 https://doi.org/10.2152/jmi.52.127
  46. Panayiotou C, Solaroli N, Xu Y, Johansson M and Karlsson A (2011) The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433, 527-534 https://doi.org/10.1042/BJ20101443
  47. Yagi H, Matsumoto M, Nakamura M et al (1996) Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse. J Immunol 157, 3412-3419
  48. Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin 1A is mutant in a thymic egressdeficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9, 1307-1315 https://doi.org/10.1038/ni.1662
  49. Mueller P, Massner J, Jayachandran R et al (2008) Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9, 424-431 https://doi.org/10.1038/ni1570
  50. Haraldsson MK, Louis-Dit-Sully CA, Lawson BR et al (2008) The lupus-related Lmb3 locus contains a diseasesuppressing Coronin-1A gene mutation. Immunity 28, 40-51 https://doi.org/10.1016/j.immuni.2007.11.023
  51. Shiow LR, Paris K, Akana MC, Cyster JG, Sorensen RU and Puck JM (2009) Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol 131, 24-30 https://doi.org/10.1016/j.clim.2008.11.002
  52. Moshous D, Martin E, Carpentier W et al (2013) Wholeexome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131, 1594-1603 https://doi.org/10.1016/j.jaci.2013.01.042
  53. Mace EM and Orange JS (2014) Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A 111, 6708-6713 https://doi.org/10.1073/pnas.1314975111
  54. McKusick VA, Eldridge R, Hostetler JA, Ruangwit U and Egeland JA (1965) Dwarfism in the amish. Ii. cartilage-hair hypoplasia. Bull Johns Hopkins Hosp 116, 285-326
  55. Thiel CT and Rauch A (2011) The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 25, 131-142 https://doi.org/10.1016/j.beem.2010.08.004
  56. Ryu J, Prather RS and Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9, 5 https://doi.org/10.1186/s40104-017-0228-7
  57. Gaj T, Gersbach CA and Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
  58. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26, 702-708 https://doi.org/10.1038/nbt1409
  59. Meyer M, de Angelis MH, Wurst W and Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107, 15022-15026 https://doi.org/10.1073/pnas.1009424107
  60. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 https://doi.org/10.1126/science.1172447
  61. Zschemisch NH, Glage S, Wedekind D et al (2012) Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 13, 60 https://doi.org/10.1186/1471-2172-13-60
  62. Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108, 12013-12017 https://doi.org/10.1073/pnas.1106422108
  63. Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21, 979-982 https://doi.org/10.1038/cr.2011.70
  64. Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35 https://doi.org/10.1111/xen.12019
  65. Whyte JJ, Zhao J, Wells KD et al (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78, 2 https://doi.org/10.1002/mrd.21271
  66. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82 https://doi.org/10.1093/nar/gkr218
  67. Hendriks WT, Jiang X, Daheron L and Cowan CA (2015) TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34, 5B 3 1-25
  68. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734 https://doi.org/10.1038/nbt.1927
  69. Choi YJ, Kim E, Reza A et al (2017) Recombination activating gene-2(null) severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget 8, 69398-69407 https://doi.org/10.18632/oncotarget.20626
  70. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  71. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  72. Hai T, Teng F, Guo R, Li W and Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372-375 https://doi.org/10.1038/cr.2014.11
  73. Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91, 78 https://doi.org/10.1095/biolreprod.114.121723
  74. Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307 https://doi.org/10.1126/science.aan4187
  75. Suzuki S, Iwamoto M, Saito Y et al (2012) Il2rg genetargeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753-758 https://doi.org/10.1016/j.stem.2012.04.021
  76. Bauer TR Jr, Adler RL and Hickstein DD (2009) Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 50, 168-186 https://doi.org/10.1093/ilar.50.2.168
  77. Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8, e76478 https://doi.org/10.1371/journal.pone.0076478
  78. Kang JT, Cho B, Ryu J et al (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14, 74 https://doi.org/10.1186/s12958-016-0206-5
  79. Lee K, Kwon DN, Ezashi T et al (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci U S A 111, 7260-7265 https://doi.org/10.1073/pnas.1406376111
  80. Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 https://doi.org/10.1186/1471-2164-14-332
  81. Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20, 50-57 https://doi.org/10.1016/j.tim.2011.11.002
  82. Ito R, Takahashi T, Katano I and Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9, 208-214 https://doi.org/10.1038/cmi.2012.2
  83. Ito T, Sendai Y, Yamazaki S et al (2014) Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 9, e113833 https://doi.org/10.1371/journal.pone.0113833