DOI QR코드

DOI QR Code

The Activation of PPAR-α and Wnt/β-catenin by Luffa cylindrica Supercritical Carbon Dioxide Extract

  • Kim, Bora (Division of Biomedicinal Chemistry and Cosmetics, Mokwon University)
  • Received : 2019.07.31
  • Accepted : 2019.10.15
  • Published : 2019.12.31

Abstract

Luffa cylindrica (LC) is a very fast-growing climber and its fruit have been considered as agricultural wastes. We conducted to check the comparative qualities of ethanol solvent extraction (LCE) and supercritical carbon dioxide extraction (LCS) of L. cylindrica fruit and seed. LCS had higher antioxidant and polyphenol contents than LCE. LCS were significantly increased peroxisome proliferator-activated receptor (PPAR)-a and involucrin expression as epidermal differentiation marker in 3D skin equivalent model. LCS also showed antimicrobial activity against Staphylococcus aureus, a causative bacteria in atopic dermatitis. In addition, LCS inhibited the adipocyte differentiation of 3T3-L1 cells. When treated with the extract at a concentration of 100 ㎍/mL, the Wnt/β-catenin pathway reporter luciferase activity of HEK 293-TOP cells was increased approximately by 2-folds compared to that of the untreated control group. These results indicate that L. cylindrica supercritical carbon dioxide extract may serve as a cosmeceutical for improving skin barrier function and the treatment of obesity.

Keywords

References

  1. Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Plants 2017, 6, 42-65. https://doi.org/10.3390/plants6040042
  2. Rivier, M.; Safonova, I.; Lebrun, P.; Griffiths, C. E.; Ailhaud, G.; Michel, S. J. Invest. Dermatol. 1998, 111, 1116-1121. https://doi.org/10.1046/j.1523-1747.1998.00439.x
  3. Tyskiewicz, K.; Konkol, M.; Roj, E. Molecules 2018, 23, 2625-2652. https://doi.org/10.3390/molecules23102625
  4. Komuves, L. G.; Hanley, K.; Lefebvre, A. M.; Man, M. Q.; Ng D. C.; Bikle, D. D.; Williams, M. L.; Elias, P. M.; Auwerx, J.; Feingold, K. R. J. Invest. Dermatol. 2000, 115, 353-360. https://doi.org/10.1046/j.1523-1747.2000.00073.x
  5. Liu, J.; Farmer, S. R. J. Biol. Chem. 2004, 279, 45020-45027. https://doi.org/10.1074/jbc.M407050200
  6. Kennell, J. A.; MacDougald, O. A. J. Biol. Chem. 2005, 280, 24004-24010. https://doi.org/10.1074/jbc.M501080200
  7. Fruhbeck, G.; Gomez-Ambrosi, J.; Muruzabal, F. J.; Burrell, M. A. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E827- E847. https://doi.org/10.1152/ajpendo.2001.280.6.E827
  8. Heiser, C. B.; Schilling, E. E. Biotropica 1988, 20, 185-191. https://doi.org/10.2307/2388233
  9. Du, Q.; Xu, Y.; Li, L.; Zhao, Y.; Jerz, G., Winterhalter, P. J. Agric. Food Chem. 2006, 54, 4186-4190. https://doi.org/10.1021/jf060479
  10. Kim, B.; Lee, S. M.; Hwang, T.; Kim, H. Korean J. Food Preserv. 2013, 20, 597-601. https://doi.org/10.11002/KJFP.2013.20.5.597
  11. Lee, S. H.; Kim, B.; Oh M. J.; Yoon, J.; Kim, H. Y.; Lee, K. J.; Lee, J. D.; Choi, K. Y. Phytother. Res. 2011, 25, 1629-1635. https://doi.org/10.1002/ptr.3469
  12. Kim, B.; Choi, Y. E.; Kim, H. S. Phytother. Res. 2014, 28, 1359-1366. https://doi.org/10.1002/ptr.5138
  13. Kim, B.; Kim, H. S. Eur. J. Pharmacol. 2018, 832, 25-32. https://doi.org/10.1016/j.ejphar.2018.05.016
  14. Kim, S. H.; Nam, G. W.; Lee, H. K.; Moon, S. J.; Chang, I. S. Arch. Dermatol. Res. 2006, 298, 273-282. https://doi.org/10.1007/s00403-006-0684-y
  15. Sharma, K. V.; Sisodia, R. J. Radiol. Prot. 2009, 29, 429-443. https://doi.org/10.1088/0952-4746/29/3/007
  16. Dall'Acqua, S.; Cervellati, R.; Loi, M. C.; Innocenti, G. Food Chem. 2008, 106, 745-749. https://doi.org/10.1016/j.foodchem.2007.06.055
  17. Jensen, J. M.; Folster-Holst, R.; Baranowsky, A.; Schunck, M.; Winoto-Morbach, S.; Neumann, C.; Schutze, S.; Proksch, E. J. Invest. Dermatol. 2004, 122, 1423-1431. https://doi.org/10.1111/j.0022-202X.2004.22621.x
  18. Kim, J.; Kim, B. E.; Ahn, K.; Leung, D. Y. M. Allergy Asthma Immunol. Res. 2019, 11, 593-603. https://doi.org/10.4168/aair.2019.11.5.593
  19. Christodoulides, C.; Lagathu, C.; Sethi, J. K.; Vidal-Puig, A. Trends Endocrinol. Metab. 2009, 20, 16-24. https://doi.org/10.1016/j.tem.2008.09.002
  20. Seo, M. J.; Lee, Y. J.; Hwang, J. H.; Kim, K. J.; Lee, B. Y. J. Nutr. Biochem. 2015, 26, 1308-1316. https://doi.org/10.1016/j.jnutbio.2015.06.005
  21. Kim, M. H.; Park, J. S.; Seo, M. S.; Jung, J. W.; Lee, Y. S.; Kang, K. S. Cell Prolif. 2010, 43, 594-605. https://doi.org/10.1111/j.1365-2184.2010.00709.x
  22. Ahn, J.; Lee, H.; Kim, S.; Ha, T. Am. J. Physiol. Cell Physiol. 2010, 298, C1510-C1516. https://doi.org/10.1152/ajpcell.00369.2009
  23. Kim, M. H.; Park, J. S.; Seo, M. S.; Jung, J. W.; Lee, Y. S.; Kang, K. S. Cell Prolif. 2010, 43, 594-605. https://doi.org/10.1111/j.1365-2184.2010.00709.x
  24. Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. Biochem. Biophys. Res. Commun. 2008, 373, 545-549. https://doi.org/10.1016/j.bbrc.2008.06.077
  25. Xue, J.; Zhu, W.; Song, J.; Jiao, Y.; Luo, J.; Yu, C.; Zhou, J.; Wu, J.; Chen, M.; Ding, W. Q.; Cao, J.; Zhang, S. Oncogene 2018, 37, 953-962. https://doi.org/10.1038/onc.2017.401
  26. Vallee, A.; Lecarpentier, Y. Front. Neurosci. 2016, 10, 459. https://doi.org/10.3389/fnins.2016.00459

Cited by

  1. The Improvement of skin barrier function and anti-obesity effect of Codonopsis lanceolata by supercritical carbon dioxide extraction vol.37, pp.4, 2020, https://doi.org/10.12925/jkocs.2020.37.4.674