DOI QR코드

DOI QR Code

5G 네트워크의 보안 취약점 및 대응 방안: 서베이

Security Vulnerability and Countermeasure on 5G Networks: Survey

  • 투고 : 2019.09.16
  • 심사 : 2019.12.20
  • 발행 : 2019.12.28

초록

4차 산업혁명시대에 발맞춰 통신 기술도 5G 기술이 보편화되고 있으며, 5G 기술은 네트워크 슬라이싱, 초다접속 등의 기술을 이용해 4G에 비해 빠른 속도와 응답 속도를 최소화한 기술로 평가 받고 있다. 5G NR은 5G 이동통신 표준을 의미하고, 네트워크 슬라이싱을 통해 네트워크를 병렬연결로 잘라 네트워크를 최적화한다. 또한 기지국 단위에서도 데이터를 처리하게 되면서 해킹에 대한 위험이 증가 되고 있는 실정이다. 또한, 단위면적당 접속 가능한 기기의 수가 기하급수적으로 늘어나므로 단위면적 내 기기 다수 해킹 후 기지국 공격 가능성 또한 존재한다. 이에 해결 방안으로는 양자암호통신 도입, 5G 보안 표준화 등을 본 연구에서 제안하여 안전성과 통신속도를 전부 만족시키는 방안을 제안한다.

In line with the era of the 4th Industrial Revolution, 5G technology has become common technology, and 5G technology is evaluated as a technology that minimizes the speed and response speed compared to 4G using technologies such as network slicing and ultra-multiple access. 5G NR stands for 5G mobile communication standard, and network slicing cuts the network into parallel connections to optimize the network. In addition, the risk of hacking is increasing as data is processed in the base station unit. In addition, since the number of accessible devices per unit area increases exponentially, there is a possibility of base station attack after hacking a large number of devices in the unit area. To solve this problem, this study proposes the introduction of quantum cryptography and 5G security standardization.

키워드

참고문헌

  1. A. Petosa. (2018). Engineering the 5G Environment. 2018 IEEE 5G World Forum (5GWF). DOI :10.1109/5gwf.2018.8516930
  2. E. Dahlman, S. Parkvall & J. Skold. (2018). 5G Standardization. 5G NR: The Next Generation Wireless Access Technology, 7-25. DOI :10.1016/b978-0-12-814323-0.00002-8
  3. T. Yoo. (2016). Network slicing architecture for 5G network. 2016 International Conference on Information and Communication Technology Convergence (ICTC). DOI :10.1109/ictc.2016.7763354
  4. T. Wolf. (n.d.). Kr (Krypton). Ac - Na Landolt-Bornstein - Group III Condensed Matter, 352-352. DOI:10.1007/10332996_91
  5. 5G Network Planning and Optimization. (2019). 5G Explained, 255-269. DOI:10.1002/9781119275695.ch9
  6. D. J. Bernstein. (n.d.). Introduction to post-quantum cryptography. Post-Quantum Cryptography, 1-14. DOI :10.1007/978-3-540-88702-7_1
  7. P. Kok & B. W. Lovett. (n.d.). Quantum communication with continuous variables. Introduction to Optical Quantum Information Processing, 255-293. DOI : 10.1017/cbo9781139193658.009
  8. J. Lee & Y. Kwak. (2016). 5G Standard Development: Technology and Roadmap. Signal Processing for 5G, 561-576. DOI :10.1002/9781119116493.ch23
  9. 5G Technology Revolution. (2017). International Journal of Modern Trends in Engineering & Research, 4(12), 135-140. DOI:10.21884/ijmter.2017.4394.2tmix
  10. K. Asatani. (2018). Trends and Issues in 5G Networking and Beyond. Journal of ICT Standardization, 5(3), 203-224. DOI : 10.13052/jicts2245-800x.531
  11. S. Hong, (2014). Research on Wireless Sensor Networks Security Attack and Countermeasures : Survey. Convergence Society for SMB, 4(4), 1-6
  12. E. Choi. (2018). Visualization Management Convergence Access Control Model for Cloud Environments. Journal of Convergence for Information Technology, 8(5), 69-75 https://doi.org/10.22156/CS4SMB.2018.8.5.069
  13. D. Yeom. (2018). Remote Control of Network-based Modular Robot. Journal of Convergence for Information Technology, 8(5), 77-83 https://doi.org/10.22156/CS4SMB.2018.8.5.077
  14. Y. Jeong. (2018). User Privacy Management Model using Multiple Group Factor based on Blockchain. Journal of Convergence for Information Technology, 8(5), 107-113 DOI : 10.22156/CS4SMB.2018.8.5.107
  15. K. I. Kim, (2018). Differences Between Client's and Supplier's receptions of IT Outsourcing Risks. Journal of Convergence for Information Technology, 8(5), 237-242. DOI : 10.22156/CS4SMB.2018.8.5.237
  16. S. Anamalamudi, A. R. Sangi, M. Alkatheiri, F. T. B. Muhaya & C. Liu. (2018). 5G-WLAN Security. A Comprehensive Guide to 5G Security, 143-163. DOI : 10.1002/9781119293071.ch7