Korean J. Math. **27** (2019), No. 4, pp. 1119–1131 https://doi.org/10.11568/kjm.2019.27.4.1119

ON GENERALIZED *f*-DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS

Kyung Ho Kim

ABSTRACT. In this paper, we introduce the notion of generalized f-derivation of lattice implication algebra and investigate some related properties. Also, we prove that if D is a generalized f-derivation associated with an f-derivation d of L, then $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

1. Introduction

The concept of lattice implication algebra was proposed by Y. Xu [11], in order to establish an alternative logic knowledge representation. Also, in [12], Y. Xu and K. Y. Qin discussed the properties lattice H implication algebras, and gave some equivalent conditions about lattice H implication algebras. Y. Xu and K. Y. Qin [13] introduced the notion of filters in a lattice implication, and investigated their properties. The present author [5, 14] introduced the notion of derivation and f-derivation in lattice implications algebras and obtained some related results. In this paper, we introduce the notion of generalized f-derivation of lattice implication algebra and investigate some related properties. Also, we prove that if D is a generalized f-derivation associated with an f-derivation d of L, then $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

Received October 8, 2019. Revised September 18, 2019. Accepted December 3, 2019.

²⁰¹⁰ Mathematics Subject Classification: 16Y30, 06B35, 06B99.

Key words and phrases: Lattice implication algebra, generalized f-derivation, isotone, $Fix_D(L)$, KerD..

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2. Preliminaries

DEFINITION 2.1. A lattice implicational gebra is an algebra $(L; \land, \lor, \prime, \rightarrow, 0, 1)$ of type (2, 2, 1, 2, 0, 0), where $(L; \land, \lor, 0, 1)$ is a bounded lattice, " \prime " is an order-reversing involution and " \rightarrow " is a binary operation, satisfying the following axioms, for all $x, y, z \in L$,

 $\begin{array}{ll} (\mathrm{L1}) & x \to (y \to z) = y \to (x \to z), \\ (\mathrm{L2}) & x \to x = 1, \\ (\mathrm{L3}) & x \to y = y' \to x', \\ (\mathrm{L4}) & x \to y = y \to x = 1 \Rightarrow x = y, \\ (\mathrm{L5}) & (x \to y) \to y = (y \to x) \to x, \\ (\mathrm{L6}) & (x \lor y) \to z = (x \to z) \land (y \to z), \\ (\mathrm{L7}) & (x \land y) \to z = (x \to z) \lor (y \to z). \end{array}$

If L satisfies conditions (I1) – (I5), we say that L is a quasi lattice implicational gebra. A lattice implication algebra L is called a lattice H implication algebra if it satisfies $x \vee y \vee ((x \wedge y) \rightarrow z) = 1$ for all $x, y, z \in L$.

In the sequel the binary operation " \rightarrow " will be denoted by juxtaposition. We can define a partial ordering " \leq " on a lattice implicationalgebra L by $x \leq y$ if and only if $x \rightarrow y = 1$ for all $x, y \in L$.

PROPOSITION 2.2. In a lattice implicational gebra L, the following hold, for all $x, y, z \in L$, (see [11])

 $\begin{array}{ll} (\mathrm{u1}) & 0 \rightarrow x = 1, \ 1 \rightarrow x = x \ \text{and} \ x \rightarrow 1 = 1, \\ (\mathrm{u2}) & x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z), \\ (\mathrm{u3}) & x \leq y \ \text{implies} \ y \rightarrow z \leq x \rightarrow z \ \text{and} \ z \rightarrow x \leq z \rightarrow y, \\ (\mathrm{u4}) & x' = x \rightarrow 0. \\ (\mathrm{u5}) & x \lor y = (x \rightarrow y) \rightarrow y, \\ (\mathrm{u6}) & ((y \rightarrow x) \rightarrow y')' = x \land y = ((x \rightarrow y) \rightarrow x')', \\ (\mathrm{u7}) & x \leq (x \rightarrow y) \rightarrow y. \end{array}$

DEFINITION 2.3. In a lattice H implication algebra L, the following hold, for all $x, y, z \in L$,

(u8) $x \to (x \to y) = x \to y$, (u9) $x \to (y \to z) = (x \to y) \to (x \to z)$ (see [11]).

DEFINITION 2.4. A subset F of a lattice implication algebra L is called a *filter* of L it satisfies,

On generalized *f*-derivations of lattice implication algebras

1121

(F1) $1 \in F$,

(F2) $x \in F$ and $x \to y \in F$ imply $y \in F$, for all $x, y \in L$ (see [11]).

DEFINITION 2.5. Let L_1 and L_2 be lattice implication algebras.

- (1) A mapping $f: L_1 \to L_2$ is an implication homomorphism if $f(x \to y) = f(x) \to f(y)$ for all $x, y \in L_1$.
- (2) A mapping $f: L_1 \to L_2$ is an *lattice implication homomorphism* if $f(x \lor y) = f(x) \lor f(y), f(x \land y) = f(x) \land f(y), f(x') = f(x)'$ for all $x, y \in L_1$ (see [11]).

DEFINITION 2.6. Let L be a lattice implication algebra and let $f : L \to L$ be an implication homomorphism on L. A mapping $d : L \to L$ is called an *f*-derivation of L if there exists an implication homomorphism f such that

$$d(x \to y) = (f(x) \to d(y)) \lor (d(x) \to f(y))$$

for all $x, y \in L(\text{see } [11])$.

PROPOSITION 2.7. Let d be a f-derivation on L. Then the following conditions hold.

 $\begin{array}{ll} (1) \ d(1) = 1. \\ (2) \ d(x) = d(x) \lor f(x) \ \text{for every } x \in L. \\ (3) \ f(x) \le d(x) \ \text{for every } x \in L. \\ (4) \ f(x) \lor f(y) \le d(x) \lor d(y) \ \text{for every } x, y \in L. \\ (5) \ d(x \to y) = f(x) \to d(y) \ \text{for every } x, y \in L. \end{array}$

3. Generalized *f*-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra and let f be an implication homomorphism on L unless otherwise specified.

DEFINITION 3.1. Let L be a lattice implication algebra and let $f : L \to L$ be an implication homomorphism on L. A map $D : L \times L \to L$ is called a *generalized* f-derivation of L if there exists an f-derivation $d: L \to L$ satisfying the the following condition

$$D(x \to y) = (f(x) \to D(y)) \lor (d(x) \to f(y))$$

for all $x, y \in L$.

Let L be a lattice implication algebra and let f be an implication homomorphism on L. If D = d, then D is an f-derivation on L.

EXAMPLE 3.2. Let $X = \{x, y\}$. Then

 $L = \mathcal{P}(X) = \{\emptyset, \{x\}, \{y\}, X\}.$

Let $0 = \emptyset$, $a = \{x\}$, $b = \{y\}$, 1 = X. Then $L = \{0, a, b, 1\}$ is a bounded lattice with above Hasse diagram.

We can make an implication \rightarrow on L such as

$$a \to b = \{x\}^C \cup \{y\} = \{y\} \cup \{y\} = \{y\} = b.$$

Hence we have the operation table of the implication :

x	x'	\rightarrow	0	a	b	1
0	1	0	1	1	1	1
a	b	a	b	1	b	1
b	a	b	a	a	1	1
1	0	1	0	a	b	1

If we define a map $f: L \to L$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases}$$

then this map f is an implication homomorphism. Define a map $d:L\to L$ and $D:L\to L$ by

$$d(x) = \begin{cases} b & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases} \qquad D(x) = \begin{cases} 0 & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases}$$

Then it is easy to check that d is an f-derivation on L and D is a generalized f-derivation associated with d.

EXAMPLE 3.3. In Example 3.2, if we define a map $f: L \to L$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, b \\ 1 & \text{if } x = a, 1 \end{cases}$$

then this map f is an implication homomorphism on L. Define a map $d: L \to L$ and $D: L \to L$ by

On generalized f-derivations of lattice implication algebras 1123

$$d(x) = \begin{cases} 1 & \text{if } x = a, 1 \\ a & \text{if } x = 0, b \end{cases} \qquad D(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x = 1, a \\ a & \text{if } x = b \end{cases}$$

Then it is easy to check that d is an f-derivation on L and D is a generalized f-derivation associated with d.

PROPOSITION 3.4. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. Then the following conditions hold.

 $\begin{array}{ll} (1) \quad D(1) = 1. \\ (2) \quad D(x) = D(x) \lor f(x) \mbox{ for every } x \in L. \\ (3) \quad f(x) \leq D(x) \mbox{ for every } x \in L. \\ (4) \quad f(x) \to y \leq D(x) \to y \mbox{ for every } x, y \in L. \end{array}$

Proof. (1) Let D be a generalized f-derivation associated with d. Then

$$D(1) = D(1 \to 1) = (f(1) \to D(1)) \lor (d(1) \to f(1))$$

= $(1 \to D(1)) \lor (1 \to 1) = D(1) \to 1 = 1.$

(2) For every $x \in L$, we have

$$D(x) = D(1 \to x) = (f(1) \to D(x)) \lor (d(1) \to f(x))$$
$$= (1 \to D(x)) \lor (1 \to f(x)) = D(x) \lor f(x).$$

(3) For all $x \in L$, by part (2), we obtain

$$\begin{aligned} f(x) &\to D(x) = f(x) \to (D(x) \lor f(x)) = f(x) \to (D(x) \to f(x)) \to f(x)) \\ &= (D(x) \to f(x)) \to (f(x) \to f(x)) = (D(x) \to f(x)) \to 1 \\ &= 1. \end{aligned}$$

This implies $D(x) \leq f(x)$ for every $x \in L$.

(4) For every $x, y \in L$, we have $D(x) \leq f(x)$ for every $x \in L$ by part (3). Hence we get $f(x) \to y \leq D(x) \to y$ for every $x, y \in L$ by (u3).

PROPOSITION 3.5. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d and f(D(x)) = D(x) for every $x \in L$. Then $D(D(x) \to x) = 1$ for every $x \in L$.

Proof. Let D be a generalized f-derivation associated with d. Then

$$D(D(x) \to x) = (f(D(x)) \to D(x)) \lor (d(D(x)) \to f(x))$$

$$= (D(x) \to D(x)) \lor (d(D(x)) \to f(x)) = 1 \lor (d(D(x)) \to f(x))$$

$$= 1.$$

PROPOSITION 3.6. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d on L. Then the following conditions hold:

(1) $D(x) \to D(y) \le D(x \to y)$ for all $x, y \in L$. (2) $D(x) \to f(y) \le f(x) \to D(y)$ for all $x, y \in L$. (3) $f(x) \to f(y) \le D(x \to y)$ for all $x, y \in L$.

Proof. (1) For all $x, y \in L$, we have $f(x) \to D(y) \leq (f(x) \to D(y)) \lor (d(x) \to f(y)) = D(x \to y)$ from (u7). Now from $f(x) \leq D(x)$, we get $D(x) \to D(y) \leq f(x) \to D(y)$ by using (u3). Hence $D(x) - D(y) \leq D(x \to y)$.

(2) For any $x, y \in L$, from $f(x) \leq D(x)$ and $f(y) \leq D(y)$, we get $D(x) \to f(y) \leq f(x) \to f(y)$ and $f(x) \to f(y) \leq f(x) \to D(y)$ by using (u3). Hence we obtain $D(x) \to f(y) \leq f(x) \to D(y)$ for all $x, y \in L$.

(3) From Definition 3.1 and (u7), for all $x, y \in L$, we have $f(x) \to D(y) \leq (f(x) \to D(y)) \lor (d(x) \to f(y)) = D(x \to y)$ for all $x, y \in L$. Since $f(y) \leq D(y)$, we get $f(x) \to f(y) \leq f(x) \to D(y)$, which implies $f(x) \to f(y) \leq D(x \to y)$.

THEOREM 3.7. Let d be an f-derivation on L. If D is a generalized f-derivation associated with d on L, we get $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

Proof. Suppose that D is a generalized f-derivation associated with a derivation d on L. Then for any $x, y \in L$, we have $d(x) \to f(y) \leq$ $f(x) \to f(y)$ since $f(x) \leq d(x)$ and $f(x) \to f(y) \leq f(x) \to D(y)$ since $f(y) \leq D(y)$. Hence we have $d(x) \to f(y) \leq f(x) \to D(y)$ and

$$D(x \to y) = (f(x) \to D(y)) \lor (d(x) \to f(y))$$

= $((f(x) \to D(y)) \to (d(x) \to f(y))) \to (d(x) \to f(y))$
= $((d(x) \to f(y)) \to (f(x) \to D(y))) \to (f(x) \to D(y))$
= $1 \to (f(x) - D(y)) = f(x) - D(y)$

from (L5) and (u3). This completes the proof.

THEOREM 3.8. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. If it satisfies $D(x \to y) = D(x) \to f(y)$ for every $x, y \in L$, we have D(x) = f(x).

Proof. Let d be an f-derivation on L and let D be a generalized fderivation associated with d. If it satisfies $D(x \to y) = D(x) \to f(y)$ for all $x, y \in L$, we have

$$D(x) = D(1 \to x) = D(1) \to f(x)$$
$$= 1 \to f(x) = f(x).$$

This completes the proof.

THEOREM 3.9. Let D be a generalized f-derivation associated with an f-derivation d on L and let D be lattice implication homomorphism on L. Then we have $D(x \vee y) = D(f(x)) \vee D(f(y))$ for every $x, y \in L$.

Proof. For every
$$x, y \in L$$
, we obtain, by (L7)

$$D(x \lor y) = D(x'' \lor y'') = D((x' \land y') \to 0)$$

$$= f(x' \land y') \to D(0) = (f'(x) \to D(0)) \lor (f'(y) \to D(0))$$

$$= D(f'(x) \to 0) \lor D(f'(y) \to 0) = D(f(x)) \lor D(f(y)).$$

THEOREM 3.10. Let D be a generalized f-derivation associated with an f-derivation d on L. Then the following conditions are equivalent:

(1) D is an isotone generalized f-derivation associate with d.

(2) $D(x) \lor D(y) \le D(x \lor y)$ for all $x, y \in L$.

Proof. $(1) \Rightarrow (2)$: Suppose that D is an isotone generalized f-derivation associated with an f-derivation d of L. We know that $x \leq x \lor y$ and $y \leq x \lor y$ for all $x, y \in L$. Since D is isotone, $D(x) \leq D(x \lor y)$ and $D(y) \leq D(x \lor y)$. Hence we obtain $D(x) \lor D(y) \leq D(x \lor y)$.

 $(2) \Rightarrow (1)$: Suppose that $D(x) \lor D(y) \le D(x \lor y)$ and $x \le y$. Then we have $D(x) \le D(x) \lor D(y) \le D(x \lor y) = D(y)$.

DEFINITION 3.11. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d.

1125

- (1) D is called a monomorphic generalized f-derivation associate with d if D is one-to- one.
- (2) D is called an *epic generalized generalized f-derivation* associate with d if D is onto.

THEOREM 3.12. Let D be a generalized f-derivation associated with an f-derivation d on L and let D is idempotent, that is, $D^2 = D$. Then the following conditions are equivalent:

- (1) D(x) = x for all $x \in L$.
- (2) D is a monomorphic generalized f-derivation associate with an f-derivation d of L.
- (3) D is an epic generalized f-derivation associate with an f-derivation d of L.

Proof. (1) \Rightarrow (2) is clear.

(2) \Rightarrow (1) Let *D* be a monomorphic generalized *f*-derivation associate with *d* and $x \in L$. By hypothesis, we have D(D(x)) = D(x) for every $x \in L$. Since *D* is monomorphic, we get D(x) = x for all $x \in L$. (1) \Rightarrow (3) is trivial.

 $(3) \Rightarrow (1)$ Let D be an epic generalized f-derivation associate with d and $x \in L$. Then there exists $y \in L$ such that D(y) = x. Hence we have $D(x) = D(D(y)) = D^2(y) = D(y) = x$.

Let d be an f-derivation of L and let D be a generalized f-derivation associated with d. Define a set $Fix_D(L)$ by

$$Fix_D(L) := \{x \in L \mid D(x) = f(x)\}$$

for all $x \in L$. Clearly, $1 \in Fix_D(L)$.

PROPOSITION 3.13. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. Then the following properties hold.

- (1) If $x \in L$ and $y \in Fix_D(L)$, we have $x \to y \in Fix_D(L)$.
- (2) If $x \in L$ and $y \in Fix_D(L)$, we have $x \lor y \in Fix_D(L)$.

Proof. (1) Let $x \in L$ and $y \in Fix_D(L)$. Then we have D(y) = f(y). Hence we get

$$D(x \to y) = f(x) \to D(y) = f(x) \to f(y)$$
$$= f(x \to y)$$

from Theorem 3.7. This completes the proof.

(2) Let $x, y \in Fix_D(L)$. Then we get

$$D(x \lor y) = D((x \to y) \to y) = f(x \to y) \to D(y)$$

= $f(x \to y) \to f(y) = f((x \to y) \to y)$
= $f(x \lor y)$

from Theorem 3.7. This completes the proof.

PROPOSITION 3.14. Let d be an f-derivation of L and let D be a generalized f-derivation associated with d. If $x \leq y$ and $x \in Fix_D(L)$, we have $y \in Fix_D(L)$.

Proof. Let $x \leq y$ and $x \in Fix_D(L)$. Then we have $x \to y = 1$, and so $f(x) \to f(y) = f(x \to y) = f(1) = 1$. This means $f(x) \leq f(y)$. By hypothesis, D(x) = f(x) for every $x \in L$. Thus we get

$$D(y) = D((1 \to y) = D((x \to y) \to y)$$

= $D((y \to x) \to x) = f(y \to x) \to D(x)$
= $f(y \to x) \to f(x) = (f(y) \to f(x)) \to f(x)$
= $(f(x) \to f(y)) \to f(y) = f(x) \lor f(y) = f(y),$

from Theorem 3.7. Hence $y \in Fix_D(L)$.

r	-	-	-	-	
L					

DEFINITION 3.15. Let L be a lattice implication algebra. A nonempty set F of L is called a *normal filter* if it satisfies the following conditions:

(1) $1 \in F$. (2) $x \in L$ and $y \in F$ imply $x \to y \in F$.

EXAMPLE 3.16. In Example 3.3, let $F = \{1, a\}$. Then F is a normal filter of a lattice implication algebra L.

PROPOSITION 3.17. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. Then $Fix_D(L)$ is a normal filter of L.

Proof. Clearly, $1 \in Fix_D(L)$. By Proposition 3.13 (1), we know tat $x \in L$ and $y \in F$ imply $x \to y \in F$. This completes the proof.

Let d be an f-derivation on L and let D be a generalized f-derivation associated with d of L. Define a set KerD by

$$KerD = \{x \in L \mid D(x) = 1\}.$$

PROPOSITION 3.18. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. Then

- (1) If $y \in KerD$, then we have $x \lor y \in KerD$ for all $x \in L$.
- (2) If $x \leq y$ and $x \in KerD$, then $y \in KerD$.
- (3) If $y \in KerD$, we have $x \to y \in KerD$ for all $x \in L$.

Proof. (1) Let D be a generalized f-derivation on L and $y \in KerD$. Then we get D(y) = 1, and so

$$D(x \lor y) = D((x \to y) \to y) = f(x \to y) \to D(y) = f(x \to y) \to 1 = 1$$

from Theorem 3.7. Hence we have $x \lor y \in KerD$.

(2) Let $x \le y$ and $x \in KerD$. Then we get $x \to y = 1$ and D(x) = 1, and so $D(x) = D(1 \to x) = D((x \to x) \to x)$

$$D(y) = D(1 \to y) = D((x \to y) \to y)$$

= $D((y \to x) \to x) = f(y \to x) \to D(x)$
= $f(y \to x) \to 1 = 1$

from Theorem 3.7. Hence we have $y \in KerD$.

(3) Let $y \in KerD$. Then D(y) = 1. Thus we have

$$D(x \to y) = f(x) \to D(y) = f(x) \to 1 = 1$$

from Theorem 3.7. Hence we get $x \to y \in KerD$.

 \square

THEOREM 3.19. Let d be an f-derivation on L and let D be a generalized f-derivation associated with a derivation d. Then KerD is a normal filter of L.

Proof. Clearly, $1 \in KerD$. Let $x \in L$ and $y \in KerD$. Then we have d(y) = 1, and so

$$D(x \to y) = f(x) \to D(y)$$

= $f(x) \to 1 = 1$,

which implies $x \to y \in KerD$ from Theorem 3.7. Hence KerD is a normal filter of L.

DEFINITION 3.20. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d. A normal filter F of L is called a D-normal filter if D(F) = F.

Since D(1) = 1, it can be easily observed that the normal filter $\{1\}$ is a D-normal filter of L. If L is onto, then D(L) = L, which implies L is an D-normal filter of L.

EXAMPLE 3.21. In Example 3.3, let $F = \{1, a, b\}$. Then F is a normal filter of D. It can be verified that D(F) = F. Therefore, F is an D-normal filter of L.

LEMMA 3.22. Let d be an f-derivation on L and let D be a generalized f-derivation associated with d and let I, J be any two D-normal filters of L. Then we have $I \subseteq J$ implies $D(I) \subseteq D(J)$.

Proof. Let $I \subseteq J$ and $x \in D(I)$. Then we have x = D(y) for some $y \in I \subseteq J$. Hence we get $x = D(y) \in D(J)$. Therefore, $D(I) \subseteq D(J)$.

PROPOSITION 3.23. Let d be an f-derivation on L and let D be a generalized f-derivation associated with an f-derivation d of L. Then an intersection of any two D-normal filters is also an D-normal filter of L.

Proof. Let $x \in D(I \cap J)$. Then x = D(a) for some $a \in I$ and $a \in J$. Hence $x = D(a) \in D(I) = I$ and $x = D(a) \in D(J) = J$, which implies $x \in I \cap J$. Now let $x \in I \cap J$. Then $x \in I = D(I)$ and $x \in J = D(J)$. Hence we have $x \in D(I) \cap D(J)$. Hence $I \cap J$ is a D-normal filter of L.

DEFINITION 3.24. Let D be a generalized f-derivation associated with a f-derivation d of L. A normal filter F of L is called an *injective normal* filter with respect to D if for $x, y \in L$, D(x) = D(y) and $x \in F$ implies $y \in F$.

Evidently, KerD is an injective normal filter of L. Though the normal filter $\{1\}$ is a D-normal filter, there is no guarantee that it is injective normal filter.

THEOREM 3.25. Let D be a generalized f-derivation associated with an f-derivation d of L. Then the following conditions are equivalent.

(1) $\{1\}$ is injective with respect to D.

- (2) $KerD = \{1\}.$
- (3) D(x) = 1 implies that x = 1 for all $x \in L$.

Proof. (1) \Rightarrow (2). Suppose that {1} is injective with respect to D. Let $x \in KerD$. Then D(x) = D(1). Since {1} is injective, we can get $x \in \{1\}$. Therefore, $KerD = \{1\}$. (2) \Rightarrow (3). The proof is trivial.

(3) \Rightarrow (1). Let D(x) = D(y) and $x \in \{1\}$. Hence D(y) = D(x) = D(1) = 1, which implies $y = 1 \in \{1\}$.

THEOREM 3.26. Let D be a generalized f-derivation associated with an f-derivation d of L and let D be idempotent. Then an D-normal filter F of L is injective with respect to D if and only if for any $x \in$ $L, D(x) \in F$ implies $x \in F$.

Proof. Let F be a D-normal filter of L and let F be injective with respect to D. Suppose that $D(x) \in F = D(F)$ and $x \in L$. Then D(x) = D(a) for some $a \in F$. Since F is injective and $a \in F$, we get that $x \in F$. Conversely, let $x, y \in L, D(x) = D(y)$ and $x \in F$. Since $x \in D(F)$, we get x = D(a) for some $a \in F$. Hence $D(y) = D(x) = D(D(a)) = D(a) \in D(F)$, which implies that $y \in F$. Therefore, F is an injective normal filter of L with respect to D.

References

- [1] L. Bolc and P. Borowik, Many-Valued Logic, Springer, Berlin, 1994.
- [2] Yilmaz Ceven and Mehmet Ali Ozturk, On f-derivations of lattice, Bull. Korean Math. Soc 45 (2008), 701–707.
- [3] Alev Firat, On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA (2010), 377–382.
- [4] J. A. Goguen, The logic of inexact concepts, Synthese 19 (1969), 325–373.
- [5] S. D. Lee and K. H. Kim, On derivations of lattice implication algebras, Ars Combinatoria 108 (2013), 279-288.
- [6] J. Liu and Y. Xu, On certain filters in lattice implicationalgebras, Chinese Quarterly J. Math. 11 (4) (1996), 106–111.
- J. Liu and Y. Xu, On the property (P) of lattice implicationalgebras, J. Lanzhou Univ. 32 (1996), 344–348.
- [8] J. Liu and Y. Xu, Filters and structure of lattice implicationalgebras, Chinese Science Bulletin 42 (18) (1997), 1517–1520.

- C. Prabpayak and U. Leerawat, On derivations of BCC-algebras, Kasetsart J. 43 (2009), 398–401.
- [10] Z. M. Song, Study on the theoretical foundation of uncertainty information processing based on lattice implication algebras and method of uncertainty reasoning, Ph. D. Thesis, Southwest Jiaotong University, China (1998) (in Chinese).
- [11] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20–27.
- [12] Y. Xu and K. Y. Qin, Lattice H implication algebras and lattice implicationalgebra classes, J. Hebei Mining and Civil Engineering Institute 3 (1992), 139–143.
- [13] Y. Xu and K. Y. Qin, On filters of lattice implicationalgebras, J. Fuzzy Math. 1
 (2) (1993), 251–260.
- [14] Y. H. Yon and K. H. Kim, On f-derivations of lattice implication algebras, Ars Combinatoria, 110 (2013), 205–215.

Kyung Ho Kim Department of Mathematics Korea National University of Transportation Chungju 27469, Korea *E-mail*: ghkim@ut.ac.kr