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ON GENERALIZED f-DERIVATIONS OF LATTICE

IMPLICATION ALGEBRAS

Kyung Ho Kim

Abstract. In this paper, we introduce the notion of generalized f -
derivation of lattice implication algebra and investigate some related
properties. Also, we prove that if D is a generalized f -derivation
associated with an f -derivation d of L, then D(x → y) = f(x) →
D(y) for all x, y ∈ L.

1. Introduction

The concept of lattice implication algebra was proposed by Y. Xu
[11], in order to establish an alternative logic knowledge representation.
Also, in [12], Y. Xu and K. Y. Qin discussed the properties lattice H
implication algebras, and gave some equivalent conditions about lattice
H implication algebras. Y. Xu and K. Y. Qin [13] introduced the no-
tion of filters in a lattice implication, and investigated their properties.
The present author [5, 14] introduced the notion of derivation and f -
derivation in lattice implications algebras and obtained some related re-
sults. In this paper, we introduce the notion of generalized f -derivation
of lattice implication algebra and investigate some related properties.
Also, we prove that if D is a generalized f -derivation associated with an
f -derivation d of L, then D(x→ y) = f(x)→ D(y) for all x, y ∈ L.
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2. Preliminaries

Definition 2.1. A lattice implicationalgebra is an algebra (L; ∧, ∨, ′,
→, 0, 1) of type (2, 2, 1, 2, 0, 0), where (L;∧,∨, 0, 1) is a bounded lattice,
“ ′ ” is an order-reversing involution and “ → ” is a binary operation,
satisfying the following axioms, for all x, y, z ∈ L,

(L1) x→ (y → z) = y → (x→ z),
(L2) x→ x = 1,
(L3) x→ y = y′ → x′,
(L4) x→ y = y → x = 1⇒ x = y,
(L5) (x→ y)→ y = (y → x)→ x,
(L6) (x ∨ y)→ z = (x→ z) ∧ (y → z),
(L7) (x ∧ y)→ z = (x→ z) ∨ (y → z).

If L satisfies conditions (I1) – (I5), we say that L is a quasi lattice
implicationalgebra. A lattice implication algebra L is called a lattice
H implication algebra if it satisfies x ∨ y ∨ ((x ∧ y) → z) = 1 for all
x, y, z ∈ L.

In the sequel the binary operation “ → ” will be denoted by juxtaposi-
tion. We can define a partial ordering “ ≤ ” on a lattice implicational-
gebra L by x ≤ y if and only if x→ y = 1 for all x, y ∈ L.

Proposition 2.2. In a lattice implicationalgebra L, the following
hold, for all x, y, z ∈ L, (see [11])

(u1) 0→ x = 1, 1→ x = x and x→ 1 = 1,
(u2) x→ y ≤ (y → z)→ (x→ z),
(u3) x ≤ y implies y → z ≤ x→ z and z → x ≤ z → y,
(u4) x′ = x→ 0.
(u5) x ∨ y = (x→ y)→ y,
(u6) ((y → x)→ y′)′ = x ∧ y = ((x→ y)→ x′)′,
(u7) x ≤ (x→ y)→ y.

Definition 2.3. In a lattice H implication algebra L, the following
hold, for all x, y, z ∈ L,

(u8) x→ (x→ y) = x→ y,
(u9) x→ (y → z) = (x→ y)→ (x→ z)(see [11]).

Definition 2.4. A subset F of a lattice implication algebra L is
called a filter of L it satisfies,
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(F1) 1 ∈ F,
(F2) x ∈ F and x→ y ∈ F imply y ∈ F, for all x, y ∈ L(see [11]).

Definition 2.5. Let L1 and L2 be lattice implication algebras.

(1) A mapping f : L1 → L2 is an implication homomorphism if f(x→
y) = f(x)→ f(y) for all x, y ∈ L1.

(2) A mapping f : L1 → L2 is an lattice implication homomorphism if
f(x∨ y) = f(x)∨ f(y), f(x∧ y) = f(x)∧ f(y), f(x′) = f(x)′ for all
x, y ∈ L1(see [11]).

Definition 2.6. Let L be a lattice implication algebra and let f :
L→ L be an implication homomorphism on L. A mapping d : L→ L is
called an f -derivation of L if there exists an implication homomorphism
f such that

d(x→ y) = (f(x)→ d(y)) ∨ (d(x)→ f(y))

for all x, y ∈ L(see [11]).

Proposition 2.7. Let d be a f -derivation on L. Then the following
conditions hold.

(1) d(1) = 1.
(2) d(x) = d(x) ∨ f(x) for every x ∈ L.
(3) f(x) ≤ d(x) for every x ∈ L.
(4) f(x) ∨ f(y) ≤ d(x) ∨ d(y) for every x, y ∈ L.
(5) d(x→ y) = f(x)→ d(y) for every x, y ∈ L.

3. Generalized f-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra and let f
be an implication homomorphism on L unless otherwise specified.

Definition 3.1. Let L be a lattice implication algebra and let f :
L → L be an implication homomorphism on L. A map D : L × L → L
is called a generalized f -derivation of L if there exists an f -derivation
d : L→ L satisfying the the following condition

D(x→ y) = (f(x)→ D(y)) ∨ (d(x)→ f(y))

for all x, y ∈ L.

Let L be a lattice implication algebra and let f be an implication
homomorphism on L. If D = d, then D is an f -derivation on L.
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Example 3.2. Let X = {x, y}. Then

L = P(X) = {∅, {x}, {y}, X}.
Let 0 = ∅, a = {x}, b = {y}, 1 = X. Then L = {0, a, b, 1} is a bounded
lattice with above Hasse diagram.
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We can make an implication → on L such as

a→ b = {x}C ∪ {y} = {y} ∪ {y} = {y} = b.

Hence we have the operation table of the implication :

x x′

0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

If we define a map f : L→ L by

f(x) =

{
0 if x = 0, a

1 if x = b, 1

then this map f is an implication homomorphism. Define a map d : L→
L and D : L→ L by

d(x) =

{
b if x = 0, a

1 if x = b, 1
D(x) =

{
0 if x = 0, a

1 if x = b, 1

Then it is easy to check that d is an f -derivation on L and D is a
generalized f -derivation associated with d.

Example 3.3. In Example 3.2, if we define a map f : L→ L by

f(x) =

{
0 if x = 0, b

1 if x = a, 1

then this map f is an implication homomorphism on L. Define a map
d : L→ L and D : L→ L by
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d(x) =

{
1 if x = a, 1

a if x = 0, b
D(x) =


0 if x = 0

1 if x = 1, a

a if x = b

Then it is easy to check that d is an f -derivation on L and D is a
generalized f -derivation associated with d.

Proposition 3.4. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d. Then the following conditions
hold.

(1) D(1) = 1.
(2) D(x) = D(x) ∨ f(x) for every x ∈ L.
(3) f(x) ≤ D(x) for every x ∈ L.
(4) f(x)→ y ≤ D(x)→ y for every x, y ∈ L.

Proof. (1) Let D be a generalized f -derivation associated with d. Then

D(1) = D(1→ 1) = (f(1)→ D(1)) ∨ (d(1)→ f(1))

= (1→ D(1)) ∨ (1→ 1) = D(1)→ 1 = 1.

(2) For every x ∈ L, we have

D(x) = D(1→ x) = (f(1)→ D(x)) ∨ (d(1)→ f(x))

= (1→ D(x)) ∨ (1→ f(x)) = D(x) ∨ f(x).

(3) For all x ∈ L, by part (2), we obtain

f(x)→ D(x) = f(x)→ (D(x) ∨ f(x)) = f(x)→ (D(x)→ f(x))→ f(x))

= (D(x)→ f(x))→ (f(x)→ f(x)) = (D(x)→ f(x))→ 1

= 1.

This implies D(x) ≤ f(x) for every x ∈ L.
(4) For every x, y ∈ L, we have D(x) ≤ f(x) for every x ∈ L by part

(3). Hence we get f(x)→ y ≤ D(x)→ y for every x, y ∈ L by (u3).

Proposition 3.5. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d and f(D(x)) = D(x) for every
x ∈ L. Then D(D(x)→ x) = 1 for every x ∈ L.
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Proof. Let D be a generalized f -derivation associated with d. Then

D(D(x)→ x) = (f(D(x))→ D(x)) ∨ (d(D(x))→ f(x))

= (D(x)→ D(x)) ∨ (d(D(x))→ f(x)) = 1 ∨ (d(D(x))→ f(x))

= 1.

Proposition 3.6. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d on L. Then the following con-
ditions hold:

(1) D(x)→ D(y) ≤ D(x→ y) for all x, y ∈ L.
(2) D(x)→ f(y) ≤ f(x)→ D(y) for all x, y ∈ L.
(3) f(x)→ f(y) ≤ D(x→ y) for all x, y ∈ L.

Proof. (1) For all x, y ∈ L, we have f(x)→ D(y) ≤ (f(x)→ D(y))∨
(d(x) → f(y)) = D(x → y) from (u7). Now from f(x) ≤ D(x), we get
D(x) → D(y) ≤ f(x) → D(y) by using (u3). Hence D(x) − D(y) ≤
D(x→ y).

(2) For any x, y ∈ L, from f(x) ≤ D(x) and f(y) ≤ D(y), we get
D(x)→ f(y) ≤ f(x)→ f(y) and f(x)→ f(y) ≤ f(x)→ D(y) by using
(u3). Hence we obtain D(x)→ f(y) ≤ f(x)→ D(y) for all x, y ∈ L.

(3) From Definition 3.1 and (u7), for all x, y ∈ L, we have f(x) →
D(y) ≤ (f(x) → D(y)) ∨ (d(x) → f(y)) = D(x → y) for all x, y ∈ L.
Since f(y) ≤ D(y), we get f(x) → f(y) ≤ f(x) → D(y), which implies
f(x)→ f(y) ≤ D(x→ y).

Theorem 3.7. Let d be an f -derivation on L. If D is a generalized
f -derivation associated with d on L, we get D(x → y) = f(x) → D(y)
for all x, y ∈ L.

Proof. Suppose that D is a generalized f -derivation associated with
a derivation d on L. Then for any x, y ∈ L, we have d(x) → f(y) ≤
f(x) → f(y) since f(x) ≤ d(x) and f(x) → f(y) ≤ f(x) → D(y) since
f(y) ≤ D(y). Hence we have d(x)→ f(y) ≤ f(x)→ D(y) and

D(x→ y) = (f(x)→ D(y)) ∨ (d(x)→ f(y))

= ((f(x)→ D(y))→ (d(x)→ f(y)))→ (d(x)→ f(y))

= ((d(x)→ f(y))→ (f(x)→ D(y)))→ (f(x)→ D(y))

= 1→ (f(x)−D(y)) = f(x)−D(y)
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from (L5) and (u3). This completes the proof.

Theorem 3.8. Let d be an f -derivation on L and let D be a gener-
alized f -derivation associated with d. If it satisfies D(x→ y) = D(x)→
f(y) for every x, y ∈ L, we have D(x) = f(x).

Proof. Let d be an f -derivation on L and let D be a generalized f -
derivation associated with d. If it satisfies D(x→ y) = D(x)→ f(y) for
all x, y ∈ L, we have

D(x) = D(1→ x) = D(1)→ f(x)

= 1→ f(x) = f(x).

This completes the proof.

Theorem 3.9. Let D be a generalized f -derivation associated with
an f -derivation d on L and let D be lattice implication homomorphism
on L. Then we have D(x ∨ y) = D(f(x)) ∨D(f(y)) for every x, y ∈ L.

Proof. For every x, y ∈ L, we obtain, by (L7)

D(x ∨ y) = D(x′′ ∨ y′′) = D((x′ ∧ y′)→ 0)

= f(x′ ∧ y′)→ D(0) = (f ′(x)→ D(0)) ∨ (f ′(y)→ D(0))

= D(f ′(x)→ 0) ∨D(f ′(y)→ 0) = D(f(x)) ∨D(f(y)).

Theorem 3.10. Let D be a generalized f -derivation associated with
an f -derivation d on L. Then the following conditions are equivalent:

(1) D is an isotone generalized f -derivation associate with d.
(2) D(x) ∨D(y) ≤ D(x ∨ y) for all x, y ∈ L.

Proof. (1)⇒ (2): Suppose that D is an isotone generalized f -derivation
associated with an f -derivation d of L. We know that x ≤ x ∨ y and
y ≤ x ∨ y for all x, y ∈ L. Since D is isotone, D(x) ≤ D(x ∨ y) and
D(y) ≤ D(x ∨ y). Hence we obtain D(x) ∨D(y) ≤ D(x ∨ y).

(2)⇒ (1): Suppose that D(x)∨D(y) ≤ D(x∨ y) and x ≤ y. Then we
have D(x) ≤ D(x) ∨D(y) ≤ D(x ∨ y) = D(y).

Definition 3.11. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d.
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(1) D is called a monomorphic generalized f -derivation associate with
d if D is one-to- one.

(2) D is called an epic generalized generalized f -derivation associate
with d if D is onto.

Theorem 3.12. Let D be a generalized f -derivation associated with
an f -derivation d on L and let D is idempotent, that is, D2 = D. Then
the following conditions are equivalent:

(1) D(x) = x for all x ∈ L.
(2) D is a monomorphic generalized f -derivation associate with an

f -derivation d of L.
(3) D is an epic generalized f -derivation associate with an f -derivation

d of L.

Proof. (1) ⇒(2) is clear.
(2) ⇒(1) Let D be a monomorphic generalized f -derivation associate
with d and x ∈ L. By hypothesis, we have D(D(x)) = D(x) for every
x ∈ L. Since D is monomorphic, we get D(x) = x for all x ∈ L.
(1) ⇒(3) is trivial.
(3)⇒(1) Let D be an epic generalized f -derivation associate with d and
x ∈ L. Then there exists y ∈ L such that D(y) = x. Hence we have
D(x) = D(D(y)) = D2(y) = D(y) = x.

Let d be an f -derivation of L and let D be a generalized f -derivation
associated with d. Define a set FixD(L) by

FixD(L) := {x ∈ L | D(x) = f(x)}
for all x ∈ L. Clearly, 1 ∈ FixD(L).

Proposition 3.13. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d. Then the following properties
hold.

(1) If x ∈ L and y ∈ FixD(L), we have x→ y ∈ FixD(L).
(2) If x ∈ L and y ∈ FixD(L), we have x ∨ y ∈ FixD(L).

Proof. (1) Let x ∈ L and y ∈ FixD(L). Then we have D(y) = f(y).
Hence we get

D(x→ y) = f(x)→ D(y) = f(x)→ f(y)

= f(x→ y)
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from Theorem 3.7. This completes the proof.
(2) Let x, y ∈ FixD(L). Then we get

D(x ∨ y) = D((x→ y)→ y) = f(x→ y)→ D(y)

= f(x→ y)→ f(y) = f((x→ y)→ y)

= f(x ∨ y)

from Theorem 3.7. This completes the proof.

Proposition 3.14. Let d be an f -derivation of L and let D be a
generalized f -derivation associated with d. If x ≤ y and x ∈ FixD(L),
we have y ∈ FixD(L).

Proof. Let x ≤ y and x ∈ FixD(L). Then we have x → y = 1, and
so f(x) → f(y) = f(x → y) = f(1) = 1. This means f(x) ≤ f(y). By
hypothesis, D(x) = f(x) for every x ∈ L. Thus we get

D(y) = D((1→ y) = D((x→ y)→ y)

= D((y → x)→ x) = f(y → x)→ D(x)

= f(y → x)→ f(x) = (f(y)→ f(x))→ f(x)

= (f(x)→ f(y))→ f(y) = f(x) ∨ f(y) = f(y),

from Theorem 3.7. Hence y ∈ FixD(L).

Definition 3.15. Let L be a lattice implication algebra. A non-
empty set F of L is called a normal filter if it satisfies the following
conditions:

(1) 1 ∈ F.
(2) x ∈ L and y ∈ F imply x→ y ∈ F.

Example 3.16. In Example 3.3, let F = {1, a}. Then F is a normal
filter of a lattice implication algebra L.

Proposition 3.17. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d. Then FixD(L) is a normal
filter of L.

Proof. Clearly, 1 ∈ FixD(L). By Proposition 3.13 (1), we know tat
x ∈ L and y ∈ F imply x→ y ∈ F. This completes the proof.
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Let d be an f -derivation on L and let D be a generalized f -derivation
associated with d of L. Define a set KerD by

KerD = {x ∈ L | D(x) = 1}.

Proposition 3.18. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d. Then

(1) If y ∈ KerD, then we have x ∨ y ∈ KerD for all x ∈ L.
(2) If x ≤ y and x ∈ KerD, then y ∈ KerD.
(3) If y ∈ KerD, we have x→ y ∈ KerD for all x ∈ L.

Proof. (1) Let D be a generalized f -derivation on L and y ∈ KerD.
Then we get D(y) = 1, and so

D(x ∨ y) = D((x→ y)→ y) = f(x→ y)→ D(y) = f(x→ y)→ 1 = 1

from Theorem 3.7. Hence we have x ∨ y ∈ KerD.
(2) Let x ≤ y and x ∈ KerD. Then we get x→ y = 1 and D(x) = 1,

and so
D(y) = D(1→ y) = D((x→ y)→ y)

= D((y → x)→ x) = f(y → x)→ D(x)

= f(y → x)→ 1 = 1

from Theorem 3.7. Hence we have y ∈ KerD.
(3) Let y ∈ KerD. Then D(y) = 1. Thus we have

D(x→ y) = f(x)→ D(y) = f(x)→ 1 = 1

from Theorem 3.7. Hence we get x→ y ∈ KerD.

Theorem 3.19. Let d be an f -derivation on L and let D be a gen-
eralized f -derivation associated with a derivation d. Then KerD is a
normal filter of L.

Proof. Clearly, 1 ∈ KerD. Let x ∈ L and y ∈ KerD. Then we have
d(y) = 1, and so

D(x→ y) = f(x)→ D(y)

= f(x)→ 1 = 1,

which implies x → y ∈ KerD from Theorem 3.7. Hence KerD is a
normal filter of L.
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Definition 3.20. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with d. A normal filter F of L is
called a D-normal filter if D(F ) = F.

Since D(1) = 1, it can be easily observed that the normal filter {1} is a
D-normal filter of L. If L is onto, then D(L) = L, which implies L is an
D-normal filter of L.

Example 3.21. In Example 3.3, let F = {1, a, b}. Then F is a normal
filter of D. It can be verified that D(F ) = F. Therefore, F is an D-normal
filter of L.

Lemma 3.22. Let d be an f -derivation on L and let D be a generalized
f -derivation associated with d and let I, J be any two D-normal filters
of L. Then we have I ⊆ J implies D(I) ⊆ D(J).

Proof. Let I ⊆ J and x ∈ D(I). Then we have x = D(y) for some
y ∈ I ⊆ J. Hence we get x = D(y) ∈ D(J). Therefore, D(I) ⊆ D(J).

Proposition 3.23. Let d be an f -derivation on L and let D be a
generalized f -derivation associated with an f -derivation d of L. Then
an intersection of any two D-normal filters is also an D-normal filter of
L.

Proof. Let x ∈ D(I ∩ J). Then x = D(a) for some a ∈ I and a ∈ J.
Hence x = D(a) ∈ D(I) = I and x = D(a) ∈ D(J) = J, which implies
x ∈ I ∩ J. Now let x ∈ I ∩ J. Then x ∈ I = D(I) and x ∈ J = D(J).
Hence we have x ∈ D(I) ∩D(J). Hence I ∩ J is a D-normal filter of L.

Definition 3.24. Let D be a generalized f -derivation associated with
a f -derivation d of L. A normal filter F of L is called an injective normal
filter with respect to D if for x, y ∈ L, D(x) = D(y) and x ∈ F implies
y ∈ F.

Evidently, KerD is an injective normal filter of L. Though the normal
filter {1} is a D-normal filter, there is no guarantee that it is injective
normal filter.

Theorem 3.25. Let D be a generalized f -derivation associated with
an f -derivation d of L. Then the following conditions are equivalent.
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(1) {1} is injective with respect to D.
(2) KerD = {1}.
(3) D(x) = 1 implies that x = 1 for all x ∈ L.

Proof. (1) ⇒ (2). Suppose that {1} is injective with respect to D.
Let x ∈ KerD. Then D(x) = D(1). Since {1} is injective, we can get
x ∈ {1}. Therefore, KerD = {1}.
(2) ⇒ (3). The proof is trivial.
(3) ⇒ (1). Let D(x) = D(y) and x ∈ {1}. Hence D(y) = D(x) =
D(1) = 1, which implies y = 1 ∈ {1}.

Theorem 3.26. Let D be a generalized f -derivation associated with
an f -derivation d of L and let D be idempotent. Then an D-normal
filter F of L is injective with respect to D if and only if for any x ∈
L,D(x) ∈ F implies x ∈ F.

Proof. Let F be a D-normal filter of L and let F be injective with
respect to D. Suppose that D(x) ∈ F = D(F ) and x ∈ L. Then D(x) =
D(a) for some a ∈ F. Since F is injective and a ∈ F, we get that x ∈ F.
Conversely, let x, y ∈ L,D(x) = D(y) and x ∈ F. Since x ∈ D(F ), we
get x = D(a) for some a ∈ F. Hence D(y) = D(x) = D(D(a)) = D(a) ∈
D(F ), which implies that y ∈ F. Therefore, F is an injective normal
filter of L with respect to D.
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