NONLINEAR ξ -LIE-*-DERIVATIONS ON VON NEUMANN ALGEBRAS

AILI YANG

ABSTRACT. Let $\mathscr{B}(\mathscr{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} and $\mathscr{M}\subseteq \mathscr{B}(\mathscr{H})$ be a von Neumann algebra without central abelian projections. Let ξ be a non-zero scalar. In this paper, it is proved that a mapping $\varphi:\mathscr{M}\to\mathscr{B}(\mathscr{H})$ satisfies $\varphi([A,B]_*^\xi)=[\varphi(A),B]_*^\xi+[A,\varphi(B)]_*^\xi$ for all $A,B\in\mathscr{M}$ if and only if φ is an additive *-derivation and $\varphi(\xi A)=\xi\varphi(A)$ for all $A\in\mathscr{M}$.

1. Introduction

Let \mathscr{A} be an associative *-algebra over the complex field \mathbb{C} and ξ be a non-zero scalar. For $A, B \in \mathscr{A}$, define the ξ -Lie-* product of A and B as $[A, B]_*^{\xi} = AB - \xi BA^*$. A mapping φ between *-algebras A and B is said to preserve the ξ -Lie-* product if $\varphi([A, B]_*^{\xi}) = [\varphi(A), B]_*^{\xi} + [A, \varphi(B)]_*^{\xi}$ for all $A, B \in \mathscr{M}$. A map: $\mathscr{A} \to \mathscr{A}$ is said to be an additive *-derivation if it is an additive derivation and satisfies $\delta(A^*) = \delta(A)^*$ for all $A \in \mathscr{A}$. Let $\phi : \mathscr{A} \to \mathscr{A}$ be a map (without the additivity assumption). We say that ϕ is a nonlinear *-Lie derivation if $\phi([A, B]_*) = [\phi(A), B]_* + [A, \phi(B)]_*$ for all $A, B \in \mathscr{A}$, where $[A, B]_* = AB - BA^*$.

Received May 16, 2019. Revised November 10, 2019. Accepted November 13, 2019.

²⁰¹⁰ Mathematics Subject Classification: 47B47 46L40.

Key words and phrases: *-derivation; ξ -Lie-* derivations; von Neumann algebras. This work is partially supported by Shannxi Natural Science Foundation(112/6121618059).

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The structure of linear Lie derivations on C^* -algebras has attracted some attention over past years. Johnson [1] proved that every continuous linear Lie derivation from a C^* -algebra A into a Banach \mathscr{A} -bimodule \mathscr{E} can be decomposed as $\delta + h$, Where $\delta : \mathscr{A} \to \mathscr{E}$ is a derivation and h is a linear mapping from \mathscr{A} into the center of \mathscr{E} . Mathieu and Villena [2] proved that every linear Lie derivation on a C^* -algebra can be decomposed into the sum of a derivation and a center-valued trace. In [3], Zhang proved the same result for nest subalgebras of factor von Neumann algebras. Cheung gave in [4] a characterization of linear Lie derivations on triangular algebras. Qi and Hou [5] discussed additive ξ -Lie derivations on nest algebras. The most interesting result on additive Lie derivations of prime rings was obtained in [6]. However, the structure of nonlinear Lie derivations or nonlinear *-Lie derivations on operator algebras is not clear, it needs to be discussed further. In [7], Cheng and Zhang investigated nonlinear Lie derivations on upper triangular matrix algebras. Yu and Zhang [8] proved that every nonlinear Lie derivations of triangular algebras is the sum of an additive derivation and a map into its centers ending commutators to zero. Motivated by these study, we consider nonlinear *-Lie derivations on von Neumann algebras.

As usual, \mathbb{R} and \mathbb{C} denote respectively the real field and complex field. Let \mathscr{H} be a complex Hilbert space. We denote by $\mathscr{B}(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H} . Recall that \mathscr{M} is a factor if its center is $\mathbb{C}I$ where I is the identity of \mathscr{M} .

2. Main result and the proof

In this section, our main result is the following theorem.

MAIN THEOREM. Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then, a mapping $\varphi: \mathscr{M} \to \mathscr{B}(\mathscr{H})$ satisfies $\varphi([A,B]_*^{\xi}) = [\varphi(A),B]_*^{\xi} + [A,\varphi(B)]_*^{\xi}$ for all $A,B \in \mathscr{M}$ if and only if φ is an additive *-derivation.

Before proving the theorem, we need some notations and preliminaries about von Neumann algebras. A von Neumann algebra \mathscr{M} is a weakly closed, self-adjoint algebra of operators on a Hilbert space \mathscr{H} containing the identity I. The set $\mathcal{Z}_{\mathscr{M}} = \{Z \in \mathscr{M} : ZM = MZ, \forall M \in \mathscr{M}\}$ is called the centre of \mathscr{M} . A projection P is called the central abelian projection if $P \in \mathscr{Z}_{\mathscr{M}}$ and $P\mathscr{M}P$ is abelian. Recall that the central carrier of M,

denoted by \overline{M} , is the smallest central projection P satisfying PM=M. It is not difficult that the central carrier of M is the projection onto the closed subspace span by $\{NM(h):h\in\mathscr{H}\}$. If M is self-adjoint, then the core Q satisfying $Q\leq P$. A projection P is said to be core-free if $\underline{P}=0$. It is clear that $\underline{P}=0$ if and only if $\overline{I-P}=I$.

Lemma 2.1([9, Lemma 4]) Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then each non-zero cental projection in \mathscr{M} is the central carrier of a core-free projection in \mathscr{M} .

LEMMA 2.2 Let \mathcal{M} be a von Neumann algebra on a Hilbert space \mathcal{H} . Let $A \in \mathcal{B}(\mathcal{H})$ and $P \in \mathcal{M}$ is a projection with $\overline{P} = I$.

- (a) If ABP = 0 for all $B \in \mathcal{M}$, then A = 0;
- (b) If $[PT(I-P), A]^{\xi} = 0$ for all $T \in \mathcal{M}$, then A(I-P) = 0.

Proof. (a) It follows from $\overline{P} = I$ that the linear span of $\{BP(x) : x \in \mathcal{H}\}$ is dense in \mathcal{H} . So ABP = 0 for all $B \in \mathcal{M}$ implies A = 0.

(b) Since $[PT(I-P), A]_*^{\xi} = PT(I-P)A - \xi A(I-P)T^*P = 0$, by replacing iT by T, we get $PT(I-P)A + \xi A(I-P)T^*P = 0$ and hence $A(I-P)T^*P = 0$ for all $A \in \mathcal{M}$. By (a), A(I-P) = 0.

By Lemma 2.1, there exists a projection P such that $\underline{P} = 0$ and $\overline{P} = I$. Throughout the paper, $P_1 = P$ is fixed, and let $P_2 = I - P$. Set $\mathcal{M}_{ij} = P_i \mathcal{M} P_j$. Then $\mathcal{M} = \sum_{i,j}^2 \mathcal{M}_{ij}$.

LEMMA 2.3 Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then, a mapping $\varphi: \mathscr{M} \to \mathscr{B}(\mathscr{H})$ satisfies $\varphi([A,B]_*^{\xi}) = [\varphi(A),B]_*^{\xi} + [A,\varphi(B)]_*^{\xi}$ for all $A,B \in \mathscr{M}$, then φ is additive.

Proof. We shall organize the proof in a series of claims.

Claim 1 $\varphi(0) = 0$.

Indeed, $\varphi(0) = \varphi([0,0]_*^{\xi}) = [\varphi(0),0]_*^{\xi} + [0,\varphi(0)]_*^{\xi} = 0.$

Claim 2 For $i, j, k \in \{1, 2\}, i \neq j, A_{kk} \in \mathcal{M}_{kk}, B_{ij} \in \mathcal{M}_{ij}$, we have

$$\varphi(A_{kk} + B_{ij}) = \varphi(A_{kk}) + \varphi(B_{ij}).$$

We only prove the case i=k=1, j=2, the proof of the other cases is similar. Let $T=T_{11}+T_{12}+T_{21}+T_{22}=\varphi(A_{kk}+B_{ij})-\varphi(A_{kk})-\varphi(B_{ij})$. We only need to prove T=0.

For any $\alpha \in \mathbb{C}$, since $[\alpha P_2, A_{11}]_*^{\xi} = 0$ and $[\alpha P_2, A_{11} + B_{12}]_*^{\xi} = [\alpha P_2, B_{12}]_*^{\xi}$, it follows from Claim 1 that

$$\begin{split} &[\varphi(\alpha P_2), A_{11} + B_{12}]_*^{\xi} + [\alpha P_2, \varphi(A_{11} + B_{12})]_*^{\xi} \\ &= \varphi([\alpha P_2, A_{11} + B_{12}]_*^{\xi}) \\ &= \varphi([\alpha P_2, B_{12}]_*^{\xi}) \\ &= \varphi([\alpha P_2, A_{11}]_*^{\xi}) + \varphi([\alpha P_2, B_{12}]_*^{\xi}) \\ &= [\varphi(\alpha P_2), A_{11}]_*^{\xi} + [\alpha P_2, \varphi(A_{11})]_*^{\xi} + [\varphi(\alpha P_2), B_{12}]_*^{\xi} + [\alpha P_2, \varphi(B_{12})]_*^{\xi} \\ &= [\varphi(\alpha P_2), A_{11} + B_{12}]_*^{\xi} + [\alpha P_2, \varphi(A_{11}) + \varphi(B_{12})]_*^{\xi}. \end{split}$$

Hence $[\alpha P_2, \varphi(A_{11} + B_{12}) - \varphi(A_{11}) - \varphi(B_{12})]_*^{\xi} = 0$, that is, $[\alpha P_2, T]_*^{\xi} = 0$, so $\alpha P_2 T - \overline{\alpha} \xi T P_2 = 0$ for any $\alpha \in \mathbb{C}$. Let $\alpha - \overline{\alpha} \xi \neq 0$, we have $T_{12} = T_{21} = T_{22} = 0$.

Similarly, since $[\alpha \xi P_1 + \overline{\alpha} P_2, B_{12}]_*^{\xi} = 0$ and $[\alpha \xi P_1 + \overline{\alpha} P_2, A_{11} + B_{12}]_*^{\xi} = [\alpha \xi P_1 + \overline{\alpha} P_2, A_{11}]_*^{\xi}$, it follows that

$$\begin{split} & [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{11} + B_{12}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{11} + B_{12})]_{*}^{\xi} \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, A_{11} + B_{12}]_{*}^{\xi}) \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, A_{11}]_{*}^{\xi}) \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, A_{11}]_{*}^{\xi}) + \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, B_{12}]_{*}^{\xi}) \\ & = [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{11}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{11})]_{*}^{\xi} \\ & + [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), B_{12}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(B_{12})]_{*}^{\xi} \\ & = [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{11} + B_{12}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{11}) + \varphi(B_{12})]_{*}^{\xi}. \end{split}$$

Hence $[\alpha \xi P_1 + \overline{\alpha} P_2, \varphi(A_{11} + B_{12}) - \varphi(A_{11}) - \varphi(B_{12})]_*^{\xi} = 0$, that is, $[\alpha \xi P_1 + \overline{\alpha} P_2, T]_*^{\xi} = 0$, from which and the result $T_{12} = T_{21} = T_{22} = 0$ we have $(\alpha - \overline{\alpha \xi})T_{11} = 0$ for any $\alpha \in \mathbb{C}$, so $T_{11} = 0$, hence $\varphi(A_{11} + B_{12}) = \varphi(A_{11}) + \varphi(B_{12})$.

Claim 3 For $A_{11} \in \mathcal{M}_{11}, B_{22} \in \mathcal{M}_{22}$, we have

$$\varphi(A_{11} + B_{22}) = \varphi(A_{11}) + \varphi(B_{22}).$$

We let $T = T_{11} + T_{12} + T_{21} + T_{22} = \varphi(A_{11} + B_{22}) - \varphi(A_{11}) - \varphi(B_{22})$, then, we only need to prove that T = 0.

For any $\alpha \in \mathbb{C}$, since $[\alpha P_1, B_{22}]_*^{\xi} = 0$ and $[\alpha P_1, A_{11} + B_{22}]_*^{\xi} = [\alpha P_1, A_{11}]_*^{\xi}$, it follows that

$$\begin{split} & [\varphi(\alpha P_1), A_{11} + B_{22}]_*^{\xi} + [\alpha P_1, \varphi(A_{11} + B_{22})]_*^{\xi} \\ & = \varphi([\alpha P_1, A_{11} + B_{22}]_*^{\xi}) \\ & = \varphi([\alpha P_1, B_{22}]_*^{\xi}) \\ & = \varphi([\alpha P_1, A_{11}]_*^{\xi}) + \varphi([\alpha P_1, B_{22}]_*^{\xi}) \\ & = [\varphi(\alpha P_1), A_{11}]_*^{\xi} + [\alpha P_1, \varphi(A_{11})]_*^{\xi} + [\varphi(\alpha P_1), B_{22}]_*^{\xi} + [\alpha P_1, \varphi(B_{22})]_*^{\xi} \\ & = [\varphi(\alpha P_1), A_{11} + B_{22}]_*^{\xi} + [\alpha P_1, \varphi(A_{11}) + \varphi(B_{22})]_*^{\xi}. \end{split}$$

Consequently, $[\alpha P_1, \varphi(A_{11} + B_{22}) - \varphi(A_{11}) - \varphi(B_{22})]_*^{\xi} = 0$, that is, $[\alpha P_1, T]_*^{\xi} = 0$, so $\alpha P_1 T - \overline{\alpha} \xi T P_1 = 0$ for any $\alpha \in \mathbb{C}$. Let $\alpha - \overline{\alpha} \xi \neq 0$, we have $T_{11} = T_{12} = T_{21} = 0$. Similarly, we have $T_{22} = 0$. Hence T = 0, that is, $\varphi(A_{11} + B_{22}) = \varphi(A_{11}) + \varphi(B_{22})$.

Claim 4 For $A_{12} \in \mathcal{M}_{12}, B_{21} \in \mathcal{M}_{21}$, we have

$$\varphi(A_{12} + B_{21}) = \varphi(A_{12}) + \varphi(B_{21}).$$

We let $T = T_{11} + T_{12} + T_{21} + T_{22} = \varphi(A_{12} + B_{21}) - \varphi(A_{12}) - \varphi(B_{21})$, then we only need to prove that T = 0. Since $[\alpha \xi P_1 + \overline{\alpha} P_2, A_{12}]_*^{\xi} = 0$ and $[\alpha \xi P_1 + \overline{\alpha} P_2, A_{12} + B_{21}]_*^{\xi} = [\alpha \xi P_1 + \overline{\alpha} P_2, B_{21}]_*^{\xi}$, it follows that

$$\begin{split} & [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{12} + B_{21}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{12} + B_{21})]_{*}^{\xi} \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, A_{12} + B_{21}]_{*}^{\xi}) \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, B_{21}]_{*}^{\xi}) \\ & = \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, A_{12}]_{*}^{\xi}) + \varphi([\alpha\xi P_{1} + \overline{\alpha}P_{2}, B_{21}]_{*}^{\xi}) \\ & = [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{12}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{12})]_{*}^{\xi} \\ & + [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), B_{21}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(B_{21})]_{*}^{\xi} \\ & = [\varphi(\alpha\xi P_{1} + \overline{\alpha}P_{2}), A_{12} + B_{21}]_{*}^{\xi} + [\alpha\xi P_{1} + \overline{\alpha}P_{2}, \varphi(A_{12}) + \varphi(B_{21})]_{*}^{\xi}. \end{split}$$

Therefore, $[\alpha \xi P_1 + \overline{\alpha} P_2, \varphi(A_{12} + B_{21}) - \varphi(A_{12}) - \varphi(B_{21})]_*^{\xi} = 0$, that is, $[\alpha \xi P_1 + \overline{\alpha} P_2, T]_*^{\xi} = 0$, from which we get $T_{11} = T_{22} = 0$.

And since $[A_{12}, P_1]_*^{\xi} = 0$, it follows that $\varphi([A_{12} + B_{21}, P_1]_*^{\xi}) = \varphi([A_{12}, P_1]_*^{\xi}) + \varphi([B_{21}, P_1]_*^{\xi})$. Hence $[T, P_1]_*^{\xi}$, from which we get $T_{21} = 0$. Similarly, $T_{12} = 0$. Therefore, $\varphi(A_{12} + B_{21}) = \varphi(A_{12}) + \varphi(B_{21})$.

Claim 5 For $A_{11} \in \mathcal{M}_{11}, B_{12} \in \mathcal{M}_{12}, C_{21} \in \mathcal{M}_{21}, D_{22} \in \mathcal{M}_{22}$, we have

$$\varphi(A_{11} + A_{12} + C_{21}) = \varphi(A_{11}) + \varphi(B_{12}) + \varphi(C_{21})$$

and

$$\varphi(D_{22} + A_{12} + C_{21}) = \varphi(D_{22}) + \varphi(B_{12}) + \varphi(C_{21}).$$

We only need to prove that $T = \varphi(A_{11} + A_{12} + C_{21}) - \varphi(A_{11}) - \varphi(B_{12}) - \varphi(C_{21}) = 0$. Similarly, we can prove $\varphi(D_{22} + A_{12} + C_{21}) = \varphi(D_{22}) + \varphi(B_{12}) + \varphi(C_{21})$. For any $\alpha \in \mathbb{C}$, since $[\alpha P_2, A_{11}]_*^{\xi} = 0$ and $[\alpha P_2, A_{11} + B_{12}]_*^{\xi} = [\alpha P_2, B_{12}]_*^{\xi}$, it follows from Claim 4 that

$$\begin{split} &[\varphi(\alpha P_2), A_{11} + B_{12} + C_{21}]_*^{\xi} + [\alpha P_2, \varphi(A_{11} + B_{12} + C_{21})]_*^{\xi} \\ &= \varphi([\alpha P_2, A_{11} + B_{12} + C_{21}]_*^{\xi}) \\ &= \varphi([\alpha P_2, B_{12}]_*^{\xi}) \\ &= \varphi([\alpha P_2, A_{11}]_*^{\xi}) + \varphi([\alpha P_2, B_{12} + C_{21}]_*^{\xi}) \\ &= [\varphi(\alpha P_2), A_{11}]_*^{\xi} + [\alpha P_2, \varphi(A_{11})]_*^{\xi} \\ &+ [\varphi(\alpha P_2), B_{12} + C_{21}]_*^{\xi} + [\alpha P_2, \varphi(B_{12} + C_{21})]_*^{\xi} \\ &= [\varphi(\alpha P_2), A_{11} + B_{12} + C_{21}]_*^{\xi} + [\alpha P_2, \varphi(A_{11}) + \varphi(B_{12} + \varphi(C_{21}))]_*^{\xi}. \end{split}$$

Hence $[\alpha P_2, T]_*^{\xi} = 0$ for any $\alpha \in \mathbb{C}$, from which we get $T_{12} = T_{21} = T_{22} = 0$.

Since $[\overline{\alpha}P_1 + \alpha\xi P_2, C_{21}]_*^{\xi} = 0$, it follows from Claim 2 that

$$\begin{split} & [\varphi(\overline{\alpha}P_{1} + \alpha\xi P_{2}), A_{11} + B_{12} + C_{21}]_{*}^{\xi} + [\alpha P_{2}, \varphi(A_{11} + B_{12} + C_{21})]_{*}^{\xi} \\ & = \varphi([\overline{\alpha}P_{1} + \alpha\xi P_{2}, A_{11} + B_{12} + C_{21}]_{*}^{\xi}) \\ & = \varphi([\overline{\alpha}P_{1} + \alpha\xi P_{2}, A_{11} + B_{12}]_{*}^{\xi}) + \varphi([\overline{\alpha}P_{1} + \alpha\xi P_{2}, C_{21}]_{*}^{\xi}) \\ & = [\varphi(\overline{\alpha}P_{1} + \alpha\xi P_{2}), A_{11} + B_{12} + C_{21}]_{*}^{\xi} + [\overline{\alpha}P_{1} \\ & + \alpha\xi P_{2}, \varphi(A_{11}) + \varphi(B_{12} + \varphi(C_{21}))]_{*}^{\xi}. \end{split}$$

Hence $[\overline{\alpha}P_1 + \alpha \xi P_2, T]_*^{\xi} = 0$ for any $\alpha \in \mathbb{C}$, from which we get $T_{11} = 0$. So T = 0. Therefore, $\varphi(A_{11} + A_{12} + C_{21}) = \varphi(A_{11}) + \varphi(B_{12}) + \varphi(C_{21})$. Similarly, we have $\varphi(D_{22} + A_{12} + C_{21}) = \varphi(D_{22}) + \varphi(B_{12}) + \varphi(C_{21})$.

Claim 6 For $A_{ij}, B_{ij} \in \mathcal{M}_{ij}, 1 \leq i \neq j \leq 2$, we have

$$\varphi(A_{ij} + B_{ij}) = \varphi(A_{ij}) + \varphi(B_{ij}).$$

Compute $[P_i + A_{ij}, P_j + B_{ij}]_*^{\xi} = A_{ij} + B_{ij} - \xi A_{ij}^* - \xi B_{ij} A_{ij}^*$. It follows from Claim 5 and Claim 2 that

$$\varphi(A_{ij} + B_{ij}) - \varphi(\xi A_{ij}^*) - \varphi(\xi B_{ij} A_{ij}^*)
= \varphi([P_i + A_{ij}, P_j + B_{ij}]_*^{\xi})
= [\varphi(P_i + A_{ij}), P_j + B_{ij}]_*^{\xi} + [P_i + A_{ij}, \varphi(P_j + B_{ij})]_*^{\xi}
= [\delta(P_i) + \varphi(A_{ij}), P_j + B_{ij}]_*^{\xi} + [P_i + A_{ij}, \varphi(P_j) + \varphi(B_{ij})]_*^{\xi}
= \varphi(A_{ij}) + \varphi(B_{ij}) - \varphi(\xi A_{ij}^*) - \varphi(\xi B_{ij} A_{ij}^*).$$

Consequently, $\varphi(A_{ij} + B_{ij}) = \varphi(A_{ij}) + \varphi(B_{ij}).$

Claim 7 For $A_{ii}, B_{ii} \in \mathcal{M}_{ii}, i = 1, 2$, we have

$$\varphi(A_{ii} + B_{ii}) = \varphi(A_{ii}) + \varphi(B_{ii}).$$

Let $T = \varphi(A_{ii} + B_{ii}) - \varphi(A_{ii}) - \varphi(B_{ii})$. We only need to prove T = 0. For any $\alpha \in \mathbb{C}$, since $[\alpha P_j, A_{ii}]_*^{\xi} = [\alpha P_j, B_{ii}]_*^{\xi} = [\alpha P_j, A_{ii} + B_{ii}]_*^{\xi} = 0$ $(i \neq j)$, it follows that

$$\varphi([\alpha P_j, A_{ii} + B_{ii}]_*^{\xi}) = \varphi([\alpha P_j, A_{ii}]_*^{\xi}) + \varphi([\alpha P_j, B_{ii}]_*^{\xi}).$$

Hence, $[\alpha P_j, T]_*^{\xi}$ = 0, from which we get that $T_{ij} = T_{ji} = T_{jj} = 0$.

For any $C_{ij} \in \mathcal{M}_{ij} (i \neq j)$, it follows from Claim 6 that

$$[\varphi(A_{ii} + B_{ii}), C_{ij}]_{*}^{\xi} + [A_{ii} + B_{ii}, \varphi(C_{ij})]_{*}^{\xi}$$

$$= \varphi([(A_{ii} + B_{ii}), C_{ij}]_{*}^{\xi})$$

$$= \varphi(A_{ii}C_{ij} + B_{ii}C_{ij})$$

$$= \varphi(A_{ii}C_{ij}) + \varphi(B_{ii}C_{ij})$$

$$= \varphi([A_{ii}, C_{ij}]_{*}^{\xi}) + \varphi([B_{ii}, C_{ij}]_{*}^{\xi})$$

$$= [(\varphi(A_{ii}) + \varphi(B_{ii})), C_{ij}]_{*}^{\xi} + [A_{ii} + B_{ii}, \varphi(C_{ij})].$$

Consequently, $[T_{ii}, C_{ij}]_*^{\xi} = 0$, that is, $T_{ii}C_{ij} = 0$ for any $C_{ij} \in \mathcal{M}_{ij}$. Note that $\overline{I - P} = I$. It follows from Lemma 2.2 (1) that $T_{ii} = 0$. So $\varphi(A_{ii} + B_{ii}) = \varphi(A_{ii}) + \varphi(B_{ii})$.

Claim 8 For $A_{11} \in \mathcal{M}_{11}, B_{12} \in \mathcal{M}_{12}, C_{21} \in \mathcal{M}_{21}, D_{22} \in \mathcal{M}_{22}$, we have

$$\varphi(A_{11} + A_{12} + C_{21} + D_{22}) = \varphi(A_{11}) + \varphi(B_{12}) + \varphi(C_{21}) + \varphi(D_{22}).$$

Let $T = \varphi(A_{11} + A_{12} + C_{21} + D_{22}) - \varphi(A_{11}) - \varphi(B_{12}) - \varphi(C_{21}) - \varphi(D_{22})$. We only need to prove T = 0.

For any $\alpha \in \mathbb{C}$, since $[\alpha P_1, D_{22}]_*^{\xi} = 0$, It follows from Claim 5 that

$$\begin{split} & [\varphi(\alpha P_1), A_{11} + A_{12} + C_{21} + D_{22}]_*^{\xi} + [\alpha P_1, \varphi(A_{11} + A_{12} + C_{21} + D_{22})]_*^{\xi} \\ & = \varphi([\alpha P_1, A_{11} + A_{12} + C_{21} + D_{22}]_*^{\xi}) \\ & = \varphi([\alpha P_1, A_{11} + A_{12} + C_{21}]_*^{\xi}) + \varphi([\alpha P_1, D_{22}]_*^{\xi}) \\ & = [\varphi(\alpha P_1), A_{11} + A_{12} + C_{21} + D_{22}]_*^{\xi} \\ & + [\alpha P_1, \varphi(A_{11}) + \varphi(B_{12}) + \varphi(C_{21}) + \varphi(D_{22})]_*^{\xi} \end{split}$$

Hence, $[\alpha P_1, T]_*^{\xi} = 0$, from which we have $T_{11} = T_{12} = T_{21} = 0$. Similarly, we can get $T_{22} = 0$. Hence, $\varphi(A_{11} + A_{12} + C_{21} + D_{22}) = \varphi(A_{11}) + \varphi(B_{12}) + \varphi(C_{21}) + \varphi(D_{22})$.

Claim 9 φ is additive.

It is an immediate consequence of Claims 6, 7 and 8.

LEMMA 2.4 For any $A \in \mathcal{M}$, we have $\varphi(\xi A) = \xi \varphi(A)$ and $\varphi(A^*) = \varphi(A)^*$.

Proof. For any $A \in \mathcal{M}$, it follows from $\varphi(I) = 0$ that

$$\varphi(A) - \varphi(\xi A) = \varphi([I, A]_*^{\xi}) = [I, \varphi(A)]_*^{\xi} = \varphi(A) - \xi \varphi(A).$$

On the other hand, we have

$$\varphi(A) - \xi \varphi(A^*) = \varphi([A, I]_*^{\xi}) = [\varphi(A), I]_*^{\xi} = \varphi(A) - \xi \varphi(A)^*.$$

Proof of Main Theorem By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get that if $\varphi([A, B]_*^{\xi}) = [\varphi(A), B]_*^{\xi} + [A, \varphi(B)]_*^{\xi}$ for all $A, B \in \mathcal{M}$, then φ is an additive *-derivation and $\varphi(\xi A) = \xi \varphi(A)$ for all $A \in \mathcal{M}$.

Acknowledgement: The authors would like to thank the referee for excellent suggestions which helped us to improve considerably the first version of the article.

References

- [1] B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455–473.
- [2] M. Mathieu and A.R. Villena, The structure of Lie derivations on C*-algebras,
 J. Funct. Anal. 202 (2003), 504–525.
- [3] J.-H. Zhang, Lie derivations on nest subalgebras of von Neumann algebras, Acta Math. Sinica 46 (2003), 657–664.
- [4] W.S. Cheung, *Lie derivation of triangular algebras*, Linear and Multilinear Algebra **51** (2003), 299–310.
- [5] X.F. Qi and J.C. Hou, Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on nest algebras, Linear Algebra Appl. **431** (2009), 843–854.
- [6] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. **335** (1993), 525–546.
- [7] Lin Chen and J. H. Zhang, Nonlinear Lie derivation on upper triangular matrix algebras, Linear and Multilinear Algebra **56** (6) (2008)725–730.
- [8] W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), 2953–2960.
- [9] Miers CR, Lie isomorphisms of operator algebras, Pacific J. Math. 1971;38, 717–735.

Aili Yang

College of Science Xi'an University of Science and Technology Xi'an 710054, P. R. China E-mail: yangaili@xust.edu.cn