DOI QR코드

DOI QR Code

MATRIX TRANSFORMATIONS AND COMPACT OPERATORS ON THE BINOMIAL SEQUENCE SPACES

  • Received : 2019.05.09
  • Accepted : 2019.09.21
  • Published : 2019.12.30

Abstract

In this work, we characterize some matrix classes concerning the Binomial sequence spaces br,s and br,sp, where 1 ≤ p < ∞. Moreover, by using the notion of Hausdorff measure of noncompactness, we characterize the class of compact matrix operators from br,s0, br,sc and br,s into c0, c and ℓ, respectively.

Keywords

References

  1. Altay, B, Basar, F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57 (1) (2005), 1-17. https://doi.org/10.1007/s11253-005-0168-9
  2. Altay, B, Basar, F, Mursaleen, M., On the Euler sequence spaces which include the spaces $l_p$ and $l_{\infty}$ I, Inform. Sci. 176 (10) (2006), 1450-1462. https://doi.org/10.1016/j.ins.2005.05.008
  3. Altay, B, Polat, H., On some new Euler difference sequence spaces, Southeast Asian Bull. Math. 30 (2) (2006), 209-220.
  4. Basar, F, Altay, B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1)(2003), 136-147. https://doi.org/10.1023/A:1025080820961
  5. Bisgin, M.C., The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016:309, (2016), doi: 10.1186/s13660-016-1256-0.
  6. Bisgin, M.C., The Binomial sequence spaces which include the spaces $l_p$ and $l_{\infty}$ and Geometric Properties, J. Inequal. Appl., 2016:304, (2016), doi:10.1186/s13660-016-1252-4.
  7. Choudhary, B, Nanda, S, Functional Analysis with Applications, John Wiley & sons Inc., New Delhi (1989).
  8. Djolovic, I, Malkowsky, E., Matrix transformations and compact operators on some new m-th order difference sequences, Appl. Math. Comput. 198 (2) (2008), 700-714. https://doi.org/10.1016/j.amc.2007.09.008
  9. Djolovic, I, Malkowsky, E., A note on compact operators on matrix domains, j. Math. Anal. Appl. 340 (1) (2008), 291-303. https://doi.org/10.1016/j.jmaa.2007.08.021
  10. Jarrah, A, M, Malkowsky, E., Ordinary, absolute and strong summability and matrix transformation, Filomat. 17 (2003), 59-78. https://doi.org/10.2298/FIL0317059J
  11. Kizmaz, H., On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169-176. https://doi.org/10.4153/CMB-1981-027-5
  12. Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. https://doi.org/10.1007/BF02393648
  13. Maddox, I. J., Elements of Functional Analysis, Cambridge University Press (2nd edition), (1988).
  14. Malkowsky, E, Rakocevic, V., On matrix domains and triangels, Appl. Math. Comput. 189 (2) (2007), 1146-1163. https://doi.org/10.1016/j.amc.2006.12.024
  15. Malkowsky, E, Rakocevic, V., An introduction into the theory of sequence spaces measure of noncompactness, Zbornik Radova, Matematicki Institut Sanu, Belgrade. 9 (17) (2000), 143-234.
  16. Mursaleen, M, Basar, F, Altay, B., On the Euler sequence spaces which include the spaces $l_p$ and $l_{\infty}$ II, Nonlinear Anal. 65 (3) (2006), 707-717. https://doi.org/10.1016/j.na.2005.09.038
  17. Mursaleen, M, Noman, A.K., Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal. 73 (2010) (2010), 2541-2557. https://doi.org/10.1016/j.na.2010.06.030
  18. Mursaleen, M, Noman, A.K., The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices 5 (3) (2011), 473-486. https://doi.org/10.7153/oam-05-35
  19. Mursaleen, M, Noman, A.K., Compactness of matrix operators on some new difference sequence spaces, Lineer Algebra Appl. 436 (1) (2012), 41-52. https://doi.org/10.1016/j.laa.2011.06.014
  20. Mursaleen, M, Noman, A.K., Applications of Hausdorff measure of noncompactness in the spaces of generalized means, Math. Ineq. Appl. 16 (2013) (2013), 207-220.
  21. Mursaleen, M, Noman, A.K., Hausdorff measure of noncompactness of certain matrix operators on the sequence spaces of generalized means, Jour. Math. Anal. Appl. 16 (2013) (2013), 207-220.
  22. Ng, P. -N, Lee, P. -Y., Cesaro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.) 20 (2) (1978), 429-433.
  23. Polat, H, Basar, F., Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed. 27B (2) (2007), 254-266.
  24. Rakocevic, V., Measures of non compactness and some applications, Filomat. 12 (1998), 87-120.
  25. Stieglitz, M, Tietz, H., Matrix transformationen von folgenraumen eine ergebnis ubersicht, Math. Z. 154 (1977), 1-16. https://doi.org/10.1007/BF01215107
  26. Sengonul, M, Basar, F., Some new Cesaro sequence spaces of non-absolute type which include the spaces $c_0$ and c, Soochow J. Math. 31 (1) (2005), 107-119.