DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR ASYMPTOTICALLY REGULAR MAPPINGS IN FUZZY METRIC SPACES

  • 투고 : 2019.04.05
  • 심사 : 2019.09.19
  • 발행 : 2019.12.30

초록

The aim of this paper is to extend some existing fixed point results for asymptotically regular mappings to fuzzy metric spaces. For this purpose some contractive type conditions with respect to an altering distance function are used. Some new common fixed point results have been derived for such mappings. We provide suitable examples to justify our study.

키워드

참고문헌

  1. F. E Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach Spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. https://doi.org/10.1090/S0002-9904-1966-11544-6
  2. A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  3. M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst. 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  4. A. A. Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary different equations, Nonlinear Analysis 72 (2010), 2238-2242. https://doi.org/10.1016/j.na.2009.10.023
  5. M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9. https://doi.org/10.1017/S0004972700001659
  6. B. E. Rhoades, S. Seesa, M. S. Khan and M. D. Khan, Some fixed point theorems for hardy-rogers type mappings, International J. Math. and Math. Sci. 7 (1984), 75-87. https://doi.org/10.1155/S0161171284000077
  7. J. Rodriguez-Lopez and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst. 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
  8. H. K. Nashine and Z. Kadelburg, Common fixed point theorems for asymptotically regular mappings on ordered orbitally complete metric spaces with an application to systems of integral equations, Filomat 30 (12) (2016), 3277-3289. https://doi.org/10.2298/FIL1612277N
  9. P. Nigam and S. S. Pagey, Some fixed point theorems for a pair of asymptotically regular and compatible mappings in fuzzy 2-metric space, Int. J. Open Problems Comput. Math. 5 (1) (2012), 71-84. https://doi.org/10.12816/0006094
  10. B. Patir, N. Goswami and L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions, Korean J. Math. 26 (2) (2018), 307-326. https://doi.org/10.11568/KJM.2018.26.2.307
  11. B. Patir, N. Goswami and V. N. Mishra, Some results on fixed point theory for a class of generalized nonexpansive mappings, Fixed Point Theory and Applications 2018 (19) (2018).
  12. K. Prudhvi, A common fixed point theorem for asymptotically regular in cone metric spaces, Asian Journal of Fuzzy and Applied Mathematics 2(1), 12-16 (2014).
  13. K. P. R. Sastry, V. S. R. Naidu, I. H. N. Rao and K. P. R. Rao, Common fixed points for asymptotically regular mappings, Indian J. Pure Appl. Math. 15 (8) (1984), 849-854.
  14. Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett. 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002
  15. S. Shukla, I. Altun and R. Sen, Fixed point theorems and asymptotically regular mappings in partial metric spaces, ISRN Computational Mathematics 2013, 6 pages (2013).
  16. B. C. Tripathy, S. Paul and N. R. Das, Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math. 32(4) (2013), 359-375. https://doi.org/10.4067/S0716-09172013000400005
  17. B. C. Tripathy, S. Paul and N. R. Das, A fixed point theorem in a generalized fuzzy metric space, Bol. Soc. Paran. Mat. 32(2) (2014), 221-227. https://doi.org/10.5269/bspm.v32i2.20896
  18. B. C. Tripathy, S. Paul and N. R. Das, Fixed point and periodic point theorems in fuzzy metric space, Songklanakarin Journal of Science and Technology, 37 (1) (2015), 89-92.