DOI QR코드

DOI QR Code

광유도 ROS 발생장치의 세척용수 중 식중독 세균에 대한 불활성화 효과

Effect of Light-Induced ROS Generation Unit on Inactivation of Foodborne Pathogenic Bacteria in Water

  • 최재혁 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김다운 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 정규석 (경기도농업기술원 소득자원연구소) ;
  • 노은정 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 류경열 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 류재기 (국립농업과학원 농산물안전성부 유해생물팀)
  • Choi, Jaehyuk (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences (NIAS), Rural Development Administration (RDA)) ;
  • Kim, Dawoon (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences (NIAS), Rural Development Administration (RDA)) ;
  • Jung, Kyu-Seok (Agricultural Resource Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Roh, Eunjung (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences (NIAS), Rural Development Administration (RDA)) ;
  • Ryu, Kyoung-Yul (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences (NIAS), Rural Development Administration (RDA)) ;
  • Ryu, Jae-Gee (Microbial Safety Team, Agro-Food Safety & Crop Protection Department, National Institute of Agricultural Sciences (NIAS), Rural Development Administration (RDA))
  • 투고 : 2019.10.24
  • 심사 : 2019.12.04
  • 발행 : 2019.12.30

초록

본 연구는 기존 기초 연구를 통해 효과가 확인된 '광에너지유도 활성산소'를 이용하여 세척용수를 소독할 수 있는 신개념의 순환형 물 소독 시스템에 대해 실증하는 것이다. 다양한 형태의 감광제 이용 광유도 ROS 발생장치를 이용하여 여러 종류의 병원성 세균을 1시간안에 3 log CFU/mL 이상의 밀도를 감소시키는 조건을 탐구하였다. PS-bead이용 광유도 ROS 발생장치의 밀도 감소 효과에 미치는 주요 요인을 분석한 결과, 세균의 종류에 따라 ROS에 대한 밀도 감소효과가 서로 상이 하였다. B. cereus와 P. carotovorum subsp. carotovorum에 대한 밀도 감소효과는 높았으나 대장균 등 식중독 세균들에 대한 밀도 감소 효과는 상대적으로 낮았다. 순환형 물 소독시스템에서 유속은 유속이 빨라질 수록, 초기 세균밀도가 낮을수록 밀도 감소효과가 증가하는 경향을 보였다. bead의 양이 증가함에 따라 밀도 감소 효과는 일부 대상세균에서 지수적으로 증가함을 알 수 있었다. 싱글 유닛 두 개를 연결한 더블원통유닛3280은 B. cereus 나 P. carotovorum subsp. carotovorum에 대한 실험에서 30 분 안에 약 3 log CFU/mL 이상의 균을 완전히 살균할 수 있었다.

As the consumption of fresh fruits and vegetables increases, food poisoning caused by foodborne pathogen contamination is not decreasing. To prevent the contamination of produce, a quick and easy, low-cost, environmentally-safe disinfection method that does not affect produce freshness or quality is needed. This study demonstrates a new-concept, circulating-water disinfection system that purifies water by using newly developed 'LED-PS (photosensitizer)-induced ROS generation unit'. Using various types of LED-PS induced ROS generation units, we investigated the conditions for reducing the density of various pathogenic bacteria by more than 3 log CFU / mL in 1 hour. The major operational factors affecting the density reduction of the LED-PS-induced ROS generation unit were analyzed. Depending on bacteria species, the density reduction rate was varied. The effect of the units on reducing the density of Bacillus cereus and Pectobacterium carotovorum subsp. carotovorum was high, but the effect on foodborne bacteria such as Escherichia coli was relatively low. In this circulating water disinfection system, the density reduction effect tended to increase as the flow rate increased and the initial bacterial density decreased. As the amount of PS absorbed beads increased, the density reduction effect increased exponentially in some bacteria. Model 3280, a double cylindrical unit connecting two single cylindrical units, could completely sterilize more than 3 log CFU/mL of B. cereus and P. carotovorum subsp. carotovorum in 30 minutes of LED irradiation.

키워드

참고문헌

  1. Food Information Statistics System, (2019, Sep. 29). Domestic Food Supply(Consumption) by year. Retrieved from: http://www.atfis.or.kr/statistics/M003000000/main.do?category=organization#
  2. Murray, K., Wu, F., Shi, J., Xue, S.J., Warriner, K., Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Qual. and Saf., 1, 289-301 (2017). https://doi.org/10.1093/fqsafe/fyx027
  3. Durantini, E.N., Photodynamic Inactivation of Bacteria. Current Bioactive Compound 2, 127-142 (2006). https://doi.org/10.2174/157340706777435158
  4. Bechec, M.L., Pigot, T., Lacombe, S., Chemical quenching of singlet oxygen and other reactive oxygen species in water: A reliable method for the determination of quantum yields in photochemical processes? Chem. PhotoChem. 2, 622-631 (2018).
  5. Luksiene, Z., Zukauskas, A., Prospects of photosensitization in control of pathogenic and harmful microorganisms. J. of Appl. Microbiol., 107, 1415-1424 (2009). https://doi.org/10.1111/j.1365-2672.2009.04341.x
  6. Racine, P., Auffray, B., Quenching of singlet molecular oxygen by Commiphora myrrha extracts and menthofuran. Fitoterapia, 76, 316-323 (2005). https://doi.org/10.1016/j.fitote.2005.03.017
  7. Ministry of Food and Drug Safety (MFDS), 2019, November 29). Food Code. Retrieved from: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=69982&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=3
  8. Foote, C.S., Clennan, E.L., 1995. Properties and reactions of singlet dioxygen. In: Foote C.S., Valentine J.S., Greenberg A., Liebman J.F. (Ed), Active oxygen in chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH series), vol 2. Springer, Dordrecht, pp. 105-106.
  9. Alves, E.A., Rodrigues, J.M.M., Faustino, M.A.F., Neves, M.G.P.M.S., Cavaleiro, J.A.S., Lin, Z., Cunha, A., Nadais M.H., Tome, J.P.C., Almeida, A., A new insight on nanomagneteporphyrin hybrids for photodynamic inactivation of microorganisms. Dyes and Pigments, 110, 80-88 (2014). https://doi.org/10.1016/j.dyepig.2014.05.016