DOI QR코드

DOI QR Code

식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi

  • 김희숙 ((주)엔젤 식품연구소) ;
  • 김지윤 ((주)엔젤 식품연구소) ;
  • 이송민 ((주)엔젤 식품연구소) ;
  • 박혜정 ((주)엔젤 식품연구소) ;
  • 이상현 (신라대학교 바이오산업학부 제약공학전공) ;
  • 장정수 ((주)엔젤 식품연구소) ;
  • 이문현 ((주)엔젤 식품연구소)
  • 투고 : 2019.04.01
  • 심사 : 2019.06.03
  • 발행 : 2019.12.28

초록

본 연구에서 부산, 창원, 제주도 일대에서 채취한 토양으로부터 분리한 균주를 이용하여 식물 병원성 곰팡이에 대해서 길항작용을 나타내는 것을 확인하였으며, 또한 분리 균주의 경우 세균성 균주에 대해서도 길항작용을 나타내는 것을 확인하였다. 이러한 길항작용은 Bacillus 속이 생산하는 2차 대사산물인 siderophore, 항생물질, 세포 외 효소 활성 등에 의해서 식물 병원성 곰팡이에 대한 길항작용을 나타내는 것으로 보이며, 특히 분리 균주로부터 생산되는 세포 외 효소는 식물 병원성 곰팡이의 세포벽에 용균작용 일으킴에 따라 세포벽을 분해하여 식물 병원성 곰팡이의 생장을 저해할 것으로 생각된다. 또한 질소 고정능 및 IAA 생성능을 통해 식물 생장 촉진 및 식물 병원성 곰팡이 성장을 억제시킬 수 있는 생물학적 제제로서 식물재배에 도움을 줄 것으로 기대된다. 최종 선별된 Bacillus subtilis ANGa5, Bacillus aerius ANGa25, Bacillus methylotrophicus ANGa27를 이용하여 식물 병원성 곰팡이 방제 및 식물 생장촉진활성을 가지는 새로운 생물학적 제제로서 이용 가능성을 제시한다.

This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

키워드

참고문헌

  1. Yoo SJ, Sang MK. 2017. Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res. Plant Dis. 23: 99-113. https://doi.org/10.5423/RPD.2017.23.2.99
  2. Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Annu. Rec. Phytopathol. 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
  3. Lu X, Zhou D, Chen X, Zhang J, Huang H, Wei L. 2017. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil 416: 53-66. https://doi.org/10.1007/s11104-017-3195-z
  4. Conrath U, Beckers GMJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe. Interact. 19: 1062-1071. https://doi.org/10.1094/MPMI-19-1062
  5. Yeo SH, Yook YM, Kim HS. 2009. Isolation and characterization of plant growth promoting rhizobacterium Bacillus subtilis YK-5 from soil. KSBB J. 24: 334-340.
  6. Bais HP, Fall R, Vivanco JM. 2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319. https://doi.org/10.1104/pp.103.028712
  7. Kang BR, Kim YH, Nam HS, Kim YC. 2017. Correlation between biosurfactants and antifungal activity of a biocontrol bacterium, Bacillus amyloliquefaciens LM11. Res. Plant Dis. 23: 177-185. https://doi.org/10.5423/RPD.2017.23.2.177
  8. Montesinos E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270: 1-11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
  9. Li XY, Mao ZC, Wu YX, Ho HH, He YQ. 2014. Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Sci. Technol. 25: 132-143. https://doi.org/10.1080/09583157.2014.960809
  10. Jung BK, Lim JH, An CH, Kim YH, Kim SD. 2012. Selection and identification of phytohormones and antifungal substances simultaneously producing plant growth promotion rhizobacteria from microbial agent treated red-pepper field. Korean J. Microbiol. Biotechnol. 40: 190-196. https://doi.org/10.4014/kjmb.1207.07001
  11. Ali SS, Vidhale NN. 2013. Bacterial siderophore and their application : A review. Int. J. Curr. Microbiol. Appl. Sci. 2: 303-312.
  12. Um YR, Kim BR, Jeong JJ, Chung CM, Lee Y. 2014. Identification of endophytic bacteria in Panax ginseng seeds and their potential for plant growth promotion. Korean J. Med. Crop Sci. 22: 306-312. https://doi.org/10.7783/KJMCS.2014.22.4.306
  13. Leveau JHJ, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Mcrobiol. 71: 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  14. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Shin PY, Cho SJ. 2011. Cellulase and xylanase activity of compostpromoting bacteria Bacillus sp. SJ21. Korean J. Soil Sci. Fert. 44: 836-840. https://doi.org/10.7745/KJSSF.2011.44.5.836
  16. Oh DG, Jang YK, Woo JE, Kim JS, Lee CH. 2016. Metabolomics reveals the effect of garlic on antioxidant- and protease-activities during Cheonggukjang (fermented soybean paste) fermentation. Food Res. Int. 82: 86-94. https://doi.org/10.1016/j.foodres.2016.01.019
  17. Cao P, Shen SS, Wen CY, Song S, Park CS. 2009. The effect of the colonization of Serratia plymuthica A21-3 in rhizosphere soil and root of pepper in different soil environment. Res. Plant Dis. 15: 101-105. https://doi.org/10.5423/RPD.2009.15.2.101
  18. Beneduzi A, Ambrosini A, Passaglia LMP. 2012. Plant growthpromoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  19. Hansen J, Sato M, Ruedy R. 2012. Perception of climate change. Proc. Natl. Acad. Sci. USA 109: 2415-2423.
  20. Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
  21. Satake T, Koike S. 1983. Sterility caused by cooling treatment at the flowering stage in rice plants : I. The stage and organ susceptible to cool temperature. Jpn. J. Crop Sci. 52: 207-213. https://doi.org/10.1626/jcs.52.207
  22. Forni C, Duca D, Glick BR. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410: 335-356. https://doi.org/10.1007/s11104-016-3007-x
  23. Maksimov IV, Abizgil'dina RP, Pusenkova LI. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. https://doi.org/10.1134/S0003683811040090
  24. Kindoli S, Lee HA, Kim JH. 2012. Propertiesof Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Choenggukjang. J. Microbiol. Biotechnol. 22: 1092-1100. https://doi.org/10.4014/jmb.1110.10002
  25. Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26: 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  26. Han JH, Shim HS, Shin JH, Kim KS. 2015. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31: 165-175. https://doi.org/10.5423/PPJ.OA.03.2015.0036
  27. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, et al. 2005. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 115: 610-621. https://doi.org/10.1172/JCI23056
  28. Neilands JB. 1981. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1: 27-46. https://doi.org/10.1146/annurev.nu.01.070181.000331
  29. Whang KS. 2001. Taxonomic characteristics of nitrogen-fixing oilgotrophic bacteria from forest soil. Korean J. Microbiol. 2: 114-119.
  30. Jung HK, Kim JR, Woo SM, Kim SD. 2007. Selction of the auxin, siderophorhe, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Korean Soc. Appl. Biol. Chem. 50: 23-28.
  31. Yun CY, Cheng YH. 2016. Isolation and characterization of phosphate solubilizing bacteria Pantoea species as a plant growth promoting rhizobacteria. J. Life Sci. 26:1163-1168. https://doi.org/10.5352/JLS.2016.26.10.1163
  32. Kim YS, Kim SW, Kabir L, Lee YS. 2016. Evaluation of rhizobacterial isolates for their antagonistic effects against various phytopathogenic fungi. Korean J. Mycol. 44: 36-47. https://doi.org/10.4489/KJM.2016.44.1.36
  33. Kim YS, Lee MS, Song JG, Lee IK, Yun BS. 2011. Screening of multifunctional bacteria with biocontrol and biofertilizing effects. Korean J. Mycol. 39: 126-130. https://doi.org/10.4489/KJM.2010.39.2.126
  34. Yang H-J, Jeong S-J, Jeong S-Y, Jeong DY. 2014. Screening of antagonistic bacteria having antifungal activity against various phytopathogens. Korean J. Mycol. 42: 333-340. https://doi.org/10.4489/KJM.2014.42.4.333
  35. Choi SM, Park MH, Jung TS, Moon KH, Kim KM, Kang JS. 2011. Characterization of Bacillus mojavensis KJS-3 for industrial applications. Arch. Pharm. Res. 34: 289-298. https://doi.org/10.1007/s12272-011-0215-z
  36. Adelantado C, Shiva C, Arosemena L, Costa-Batllori L, Calvo MA. 2007. Enzymatic mechanisms related to antimicrobial activity of Rutaceae extracts. J. Biol. Sci. 7: 71-73. https://doi.org/10.3923/jbs.2007.71.73