DOI QR코드

DOI QR Code

Potential Yeast from Indonesian Wild Forest Honey Showing Ability to Produce Lipase for Lipid Transesterification

  • 투고 : 2019.07.18
  • 심사 : 2019.09.16
  • 발행 : 2019.12.28

초록

Biodiesel is produced through the transesterification process in the presence of alcohol and a catalyst that catalyzes the conversion of triglycerides to esters and glycerol compounds. A more optimal product conversion can be achieved using enzymes, such as lipase. Lipase is reported to be produced in osmophilic yeasts due to the low water content in their natural habitats. Wild forest honey is one of the osmophilic natural habitats in Indonesia. However, lipase-producing yeast has not been reported in the Indonesian honey. In this study, we screened the lipase-producing yeasts isolated from wild forest honey collected from Central Sulawesi. The production profile and activity of lipase were determined at different pH values and temperatures. One promising yeast was isolated from the honey, which was identified as Zygosaccharomyces mellis SG 1.2 based on ITS sequence. The maximum lipase production (24.56 ± 1.30 U/mg biomass) was achieved by culturing the strain in a medium containing 2% olive oil as a carbon source at pH 7 and 30℃ for 40 h. The optimum pH and temperature for lipase activity were 6 and 55℃, respectively. The enzyme maintained 80% of its activity upon incubation at 25℃ for 4 h. However, the enzyme activity decreased by more than 50% upon incubation at 35 and 40℃ for 2 h. This is the first study to report the lipase producing capability of Z. mellis. Further studies are needed to optimize the enzyme production.

키워드

참고문헌

  1. Pera LM, Romero CM, Baigori MD, Castro GR. 2006. Catalytic properties of lipase extracts from Aspergillus niger. Food Technol. Biotechnol. 44: 247-252.
  2. Sharma R, Chisti Y, Banerjee CU. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  3. Christopher LP, Kumar H, Zambare VP. 2014. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 119: 497-520. https://doi.org/10.1016/j.apenergy.2014.01.017
  4. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F. 2015. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energy Rev. 41: 1447-1464. https://doi.org/10.1016/j.rser.2014.09.035
  5. Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN. 2013. The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 19: 14-26. https://doi.org/10.1016/j.jiec.2012.07.009
  6. Gutarra ML, Godoy MG, Maugeri F, Rodrigues MI, Freire DM. 2009. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour. Technol. 100: 5249-5254. https://doi.org/10.1016/j.biortech.2008.08.050
  7. Veerapagu M, Narayanan DRAS, Ponmurugan K, Jeya KR. 2013. Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian J. Pharm. Clin. Res. 6: 62-67.
  8. Elwan SH, el-Hoseiny MM, Ammar MS, Mostafa SA. 1983. Lipase production by Bacillus circulans under mesophilic and osmophilic conditions: Factor affecting lipase production. G. Batteriol. Virol. Immunol. 76: 187-99.
  9. Fjerbaek L, Christensen KV, Norddahl B. 2009. A review of current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng. 102: 1298-1315. https://doi.org/10.1002/bit.22256
  10. Leung DYC, Wu X, Leung MKH. 2010. A review on biodiesel production using catalyzed transesterification. Appl. Energy 87: 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
  11. Kuntadi, K. 2008. Perkembangan koloni Apis mellifera L. yang diberi tiga formula kedelai sebagai pakan buatan pengganti serbuksari. J. Penelitian Hutan dan Konservasi Alam 5: 367-379. https://doi.org/10.20886/jphka.2008.5.4.367-379
  12. Prihartini M, Ilmi M. 2018. Karakterisasi dan klasifikasi numerik khamir dari madu hutan Sulawesi Tengah. J. Mikologi Indonesia 2: 112-128. https://doi.org/10.46638/jmi.v2i2.41
  13. Gupta R, Gupta N, Rathi P. 2008. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
  14. Zusfahair, Setyaningtyas T, Fatoni A. 2010. Isolasi, pemurnian dan karakterisasi lipase bakteri hasil skrining dari tanah tempat pembuangan akhir (TPA) gunung Tugel Banyumas. J. Natur Indonesia 12: 124-129. https://doi.org/10.31258/jnat.12.2.124-129
  15. Adham NZ, Ahmed EM. 2009. Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties. Ind. J. Microbiol. 49: 77-83. https://doi.org/10.1007/s12088-009-0004-2
  16. Kwon DY, Rhee JS. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J. Am. Oil Chem. Soc. 63: 89-92. https://doi.org/10.1007/BF02676129
  17. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microorganisms quantities of protein in utilizing the principle of protein‐dye binding. Anal. Biochem 72: 248‐254. https://doi.org/10.1006/abio.1976.9999
  18. Gaskell GJ, Carter DA, Britton WJ, Tovey ER, Benyon FHL, Lovborg, Y. 1997. Analysis of the internal transcribed spacer regions of ribosomal DNA in common airborne allergenic fungi. Electrophoresis 18: 1567-1569. https://doi.org/10.1002/elps.1150180914
  19. Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S. 2012. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Divers. 52: 123-139. https://doi.org/10.1007/s13225-011-0115-z
  20. Egli CM, Henick-Kling T. 2001. Identification of Brettanomyces/ Dekkera species based on polymorphism in the rRNA internal transcribed spacer region. Am. J. Enol. Vitic. 52: 241-247.
  21. James SA, Stratford M. 2003. Spoilage yeasts with emphasis on the genus Zygosaccharomyces, pp. 171-191. In Boekhout T, Robert V (eds), Yeasts in food: Beneficial and detrimental aspects. Behrs Verlag, Hamburg.
  22. Steels H, Bond CJ, Collins MD, Roberts IN, Stratford M, James SA. 1999. Zygosaccharomyces lentus sp. nov., a new member of the yeast genus Zygosaccharomyces Barker. Int. J. Syst. Bacteriol. 49: 319-327. https://doi.org/10.1099/00207713-49-1-319
  23. Steels H, James SA, Bond CJ, Roberts IN, Stratford M. 2002. Zygosaccharomyces kombuchaensis: the physiology of a new species related to the spoilage yeasts Zygosaccharomyces lentus and Zygosaccharomyces bailii. FEMS Yeast Res. 2: 113-121. https://doi.org/10.1016/S1567-1356(02)00080-6
  24. Liu G, Tao C, Zhu B, Bhai W, Zhang L, Wang Z, et al. 2016. Identification of Zygosaccharomyces mellis strains in stored honey and their stress tolerance. Food Sci. Biotechnol. 25: 1645-1650. https://doi.org/10.1007/s10068-016-0253-x
  25. Kumar KD, Usha KY, Swamy SV, Sailaja SV. 2014. Characterization of partially purified lipase from Saccharomyces cerevisiae. Int. J. Pharm. Pharm. Sci. 6: 514-517.
  26. Dalmau E, Montesinos J, Lotti M, Casas C. 2000. ffect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Technol. 26: 657-663. https://doi.org/10.1016/S0141-0229(00)00156-3
  27. de Morais WG, Kamimura ES, Ribeiro EJ, Pessela BC, Cardoso VL, de Resende MM. 2016. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. Protein Exp. Purif. 123: 26-34. https://doi.org/10.1016/j.pep.2016.04.001
  28. de Almeida AF, Tauk-Tornisielo SM, Carmona EC. 2013. Acid lipase from Candida viswanathii: Production, biochemical properties, and potential application. Biomed. Res. Int. 2013: 435818.
  29. Valero F, del Rio JL, Poch M, Sola C. 1991. Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. J. Ferment. Bioeng. 72: 399-401. https://doi.org/10.1016/0922-338X(91)90095-X
  30. Azeredo LAI, Gomes PM, Sant'ana JR, Castilho LR, Freire DMG. 2007. Production and regulation of lipase activity from Pennicllium restrictum in submerged and solid state fermentations. Curr. Microbiol. 54: 361-365. https://doi.org/10.1007/s00284-006-0425-7
  31. Gunstone FD, Hamilton RJ, Padley FB, Ilyas-Qureshi, M. 1965. Glyceride studies: V. The distribution of unsaturated acyl groups in vegetable triglycerides. J. Am. Oil Chem. Soc. 42: 965-970. https://doi.org/10.1007/BF02632456
  32. Li CY, Cheng CY, Chen TL. 2004. Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as carbon source. Biochem. Eng. J. 19: 25-31. https://doi.org/10.1016/j.bej.2003.09.006
  33. Lima VMG, Krieger N, Sarquis MIM, Mitchell DA, Ramos LP, Fontana JD. 2003. Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol. Biotechnol. 41: 105-110.
  34. Treichel H, de Oliveira D, Mazutti MA, di Luccio M, Oliveira JV. 2010. A review on microbial lipases production. Food Bioproc. Tech. 3: 182-196. https://doi.org/10.1007/s11947-009-0202-2
  35. Wang D, Xu Y, Shan T. 2008. Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochem. Eng. J. 41: 30-37. https://doi.org/10.1016/j.bej.2008.03.003
  36. Lotti M, Monticelli S, Montesinos JL, Brocca S, Valero F, Lafuente J. 1998. Physiological control on the expression and secretion of Candida rugosa lipase. Chem. Phys. Lipids 93: 143-148. https://doi.org/10.1016/S0009-3084(98)00038-3
  37. Korbekandi H, Abedi D, Pourhossein M, Motovali-Bashi M, Hejazi M, Narimousaei M, Kabiri M. 2008. Optimisation of Candida rugosa lipase esterase activity. Biotechnology 7: 112-117. https://doi.org/10.3923/biotech.2008.112.117
  38. del Rio JL, Serra P, Valero F, Pooh M, Sola C. 1990. Reaction scheme of lipase production by Candida rugosa growing on olive oil. Biotechnol. Lett. 12: 835-838. https://doi.org/10.1007/BF01022605
  39. Palmer T. 1991. Understanding enzyme, pp. 192-193. 3rd Ed. Ellis Horwood, New York.
  40. Toida J, Akirawa Y, Kondou K, Fuusawa M, Sekiguchi J. 1998. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 62: 759-763. https://doi.org/10.1271/bbb.62.759
  41. Falony G, Armas JC, Mendoza JCD, Hernández JLM. 2006. Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technol. Biotechnol. 44: 235-240.
  42. Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R. 1999. Microbial lipases: Potential biocatalysts for the future industry. Curr. Sci. 77: 101-115.
  43. Daniel RM, Dines M, Petach HH. 1996. The Denaturation and degradation of stable enzymes at high temperatures. Biochem. J. 317: 1-11. https://doi.org/10.1042/bj3170001
  44. Matthew CR. 1993. Pathways of protein folding. Annu. Rev. Biochem. 62: 653-683. https://doi.org/10.1146/annurev.bi.62.070193.003253
  45. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. 2006. Physiology and biotechnology of Aspergillus. Adv. Appl. Microbiol. 58: 1-75. https://doi.org/10.1016/S0065-2164(05)58001-8