DOI QR코드

DOI QR Code

An exact transfer matrix method for coupled bending and bending vibrations of a twisted Timoshenko beam

  • Lee, Jung Woo (Department of Mechanical System Engineering, Kyonggi University) ;
  • Lee, Jung Youn (Department of Mechanical System Engineering, Kyonggi University)
  • 투고 : 2019.07.30
  • 심사 : 2019.09.23
  • 발행 : 2019.12.25

초록

In this study, an exact transfer matrix expression for a twisted uniform beam considering the effect of shear deformation and rotary inertia is developed. The particular transfer matrix is derived by applying the distributed mass and transcendental function while using a local coordinate system. The results obtained from this method are independent for a number of subdivided elements, and this method can determine the required number of exact solutions for the free vibration characteristics of a twisted uniform Timoshenko beam using a single element. In addition, it can be used as a useful numerical method for the computation of high-order natural frequencies. To validate the accuracy of the proposed method, the computed results are compared with those reported in the existing literature, and the comparison results indicate notably good agreement. In addition, the method is used to investigate the effects of shear deformation and rotary inertia for a twisted beam.

키워드

과제정보

연구 과제 주관 기관 : Nation Research Foundation of Korea

The authors gratefully acknowledge the financial support for this research from the national research Foundation of Korea (Grant number NRF-2018R1D1A1B07047019).

참고문헌

  1. Ait Atmane, H., Tounssi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  2. Banerjee, J.R. (2001), "Free vibration analysis of a twisted beam using the dynamic stiffness method", Int. J. Solid. Struct., 38(38-39), 6703-722. https://doi.org/10.1016/S0020-7683(01)00119-6.
  3. Banerjee, J.R. (2004), "Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timosheako beam", J. Sound Vib., 270(1-2), 379-401. https://doi.org/10.1016/S0022-460X(03)00633-3.
  4. Bellifa, H., Beorahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  5. Bouhadra, A, Tounsi, A, Bousahla, A.A, Benyoucef, S. and Mahmoud S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  6. Bourada, F., Bonsahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struc., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  7. Carnegie, W. and Thomas, J. (1972), "The coupled bending-bending vibration of pretwisted tapered blading", J. Eng. Ind., 94(1), 255-266. https://doi.org/10.1115/1.3428120.
  8. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  9. Chen, W.R. (2014), "Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvin-Voigt damping", Int. J. Mech. Sci., 88, 61-70. https://doi.org/10.1016/j.ijmecsci.2014.07.006.
  10. Chen, J. and Li, Q.S. (2019), "Vibration characteristics of a rotating pre-twisted composite laminated blade", Compos. Struct., 208, 78-90. https://doi.org/10.1016/j.compstroct.2018.10.005.
  11. Gu, X.J., Hao, Y.X., Zhang, W., Lin, L.T. and Chen, J. (2019), "Free vibration of rotating cantilever pre-twisted panel with initial exponential fuoction type geometric imperfection", Appl. Math. Model., 68, 327-352. https://doi.org/10.1016/j.apm.2018.11.037.
  12. Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform spinning twisted Timosheako beam using differential transform", Int. J. Mech. Sci., 48(11), 1323-1331. https://doi.org/10.1016/j.ijmecsci.2006.05.002.
  13. Huang, Y., Chen, C.H., Keer, L.M. and Yao, Y. (2017), "A general solution to stroctural performance of pre-twisted Euler beam subject to static load", Struct. Eng. Mech., 64(2), 205-212. http://ds.doi.org/10.12989/sem.2017.64.2.205.
  14. Huang, Y., Chen, C.H., Zon, H.R. and Yao, Y. (2019), ''The finite element model of pre-twisted Euler beam based on general displacement solution", Struct. Eng. Mech., 69(5), 479-486. http://ds.doi.org/10.12989/sem.2019.69.5.479.
  15. Lee, J.W. and Lee, J.Y. (2016), "Development of a transfer matrix method to obtain exact solutions for the dynamic characteristics of a twisted uniform beam", Int. J. Mech. Sci., 105, 215-226. https://doi.org/10.1016/j.ijmecsci.2015.11.015.
  16. Lee, J.W. and Lee, J.Y. (2017a), "A transfer matrix method capable of determining the exact solutions of a twisted Bernoulli-Euler beam with multiple edge cracks", Appl. Math. Model., 41, 474-493. https://doi.org/10.1016/j.apm.2016.09.013.
  17. Lee, J.W., Jo, C.W., Lee, J.S. and Lee, J.Y. (2017b), "Numerical stability of transfer matrix method based on transcendental functions for vibration analyses of the structures", Trans. Korean Soc. Noise Vib. Eng., 27(6), 740-751. https://doi.org/10.5050/KSNVE.2017.27.6.740.
  18. Lee, J.W. and Lee, J.Y. (2019), "Contribution rates of normal and shear strain energies to the natural frequencies of functionally graded shear deformation beams", Compos. Part B Eng., 159, 86-104. https://doi.org/10.1016/j.compositesb.2018.09.050.
  19. Lin, S.M. (1997), "Vibrations of elastically restrained nonuniform beams with arbitrary pretwist", AIAA J. 35(11), 1681-1687. https://doi.org/10.2514/2.22.
  20. Lin, S.M., Wang, W.R. and Lee, S.Y. (2001), ''The dynamic analysis of nonuniformly pretwisted Timoshenko beams with elastic boundary conditions", Int. J. Mech. Sci., 43(10), 2385-2405. https://doi.orgI10.1016/S0020-7403(01)00018-2.
  21. Murthy, V.R. (1976), "Dynamic characteristics of rotor blades", J. Sound Vib., 49, 483-500. https://doi.org/10.1016/0022-460X(76)90830-0.
  22. Mustapha, K.B. (2017), "Dynamic behaviors of spinning pretwisted Rayleigh micro-beams", Eur. J. Comput. Mech., 26(5-6), 473-507. https://doi.org/10.1080/17797179.2017.1354576.
  23. Mustapha, K.B. and Zhong, Z.W. (2012), "Wave propagation characteristics of a twisted micro scale beam", Int. J. Eng. Sci., 53, 46-57. https://doi.org/10.1016/j.ijengsci.2011.12.006.
  24. Oh, S.Y., Song, O. and Libresen, L. (2003), "Effects of pretwist and presetting on coupled bending vibrations of rotating thin walled composite beams", Int. J. Solid Struct., 40(5), 1203-1224. https://doi.org/10.1016/S0020-7683(02)00605-4.
  25. Oh, Y.T. and Yoo, H.H. (2016), "Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials", Int. J. Mech. Sci., 119, 68-79. https://doi.org/10.1016/j.ijmecsci.2016.10.002
  26. Rosen, A. (1991), "Structural and dynamic behavior of pre twisted rods and beams", Appl. Mech. Rev., 44(12), 483-515. https://doi.org/10.1115/1.3119490.
  27. Subrahmanyarn, K.B., Kulkami, S.Y. and Rao, J.S. (1981), "Coupled bending-bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method", Int. J. Mech. Sci., 23(9), 517-530. https://doi.org/10.1016/0020-7403(81)90058-8.
  28. Sinha, S.K. and Turner, K.E. (2011), "Natural frequencies of a pretwisted blade in a centrifugal force field", J. Sound Vib., 330(11), 2655-2681. https://doi.org/10.1016/j.jsv.2010.12.017.
  29. Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017a), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstroct.2016.12.009.
  30. Shenas, A.G., Ziaee, S. and Malekzadeh, P. (2017b), "Nonlinear vibration analysis of pre-twisted functionally graded microbeams in thermal environment", Thin-Wall. Struct., 118, 87-104. https://doi.org/10.1016/j.tws.2017.05.003.
  31. Yoo, H.H., Kwak, J.Y. and Chung, J. (2001), "Vibration analysis of rotating pre-twisted blades with a concentrated mass", J. Sound Vib., 240(5), 891-908. https://doi.org/10.1006/jsvi.2000.3258.
  32. Yardimoglu, B. and Yildirim, T. (2004), "Finite element model for vibration analysis of pre-twisted Timoshenko Beam", J. Sound Vib., 273(4-5), 741-754. https://doi.org/10.1016/j.jsv.2003.05.003.
  33. Yoon, K.H. and Lee, P.S. (2014), "Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors", Comput. Method Appl. Mech. Engrg. 281, 106-130. https://doi.org/10.1016/j.cma.2014.07.023.
  34. Zhu, T.L. (2011), "The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh-Ritz method", Comput. Mech., 47, 395-408. https://doi.org/10.1007/s00466-010-0550-9.

피인용 문헌

  1. Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach vol.76, pp.3, 2019, https://doi.org/10.12989/sem.2020.76.3.355