Acknowledgement
Supported by : Recep Tayyip Erdogan University
This research described in this paper was financially supported by the Recep Tayyip Erdoğan University Scientific Research Project (Grant no: FBA-2016-659). The first and second authors would like to thank institution.
References
- ABAQUS, (2017). ABAQUS/Standard: User's Manual, Dassault Systemes Simulia, Johnston, RI.
- Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R., and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
- Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R. B., and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., Int. J., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571
- Adibelli, H., Comez, I. and Erdol, R. (2013), "Receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp", Arch. Mech., 65(3), 219-236.
- Akbas, S. D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
- ANSYS (2013). Swanson Analysis Systems Inc., Houston, PA, USA.
- Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J.,, 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
- Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytechnic 19(4), 507-512.https://doi.org/10.2339/2016.19.4507-512
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Ayatollahi, M.R., Pirmohammad, S. and Sedighiani, K. (2014), "Three-dimensional finite element modeling of a transverse topdown crack in asphalt concrete", Comput. Concr., 13(4), 569-585. http://doi.org/10.12989/cac.2014.13.4.569
- Bathe, K.J. and Chaudhary, A. (1985), "A solution method for planar and axisymmetric contact problem", Int. J. Numer. Meth. Eng., 21(1), 65-88. https://doi.org/10.1002/nme.1620210107
- Belaasilia, Y., Timesli, A., Braikat, B. and Jamal, M. (2017), "A numerical mesh-free model for elasto-plastic contact problems", Eng. Anal. Bound. Elem., 82, 68-78. https://doi.org/10.1016/j.enganabound.2017.05.010
- Benouis, A., Boulenouar, A., Benseddiq, N. and Serier, B. (2015), "Numerical analysis of crack propagation in cement PMMA: application of SED approach", Struct. Eng. Mech., Int. J., 55(1), 99-109. http://doi.org/10.12989/sem.2015.55.1.093
- Birinci, A. (2011), "Crack-contact problem for an elastic layer with rigid stamps", Struct. Eng. Mech., Int. J., 37(3), 285-296. http://doi.org/10.12989/sem.2011.37.3.285
- Cetisli, F. and Kaman, M.O. (2014), "Numerical analysis of interface crack problem in composite plates jointed with composite patch", Steel Compos. Struct., Int. J., 13(2), 203-220. http://doi.org/10.12989/scs.2014.16.2.203
- Chaolei, Z., Qian, G., Zhiqiang, H., Gao, L. and Jingzhou, L. (2017), "Studies on static frictional contact problems of double cantilever beam based on SBFEM", Open Civ. Eng. J., 11(1), 896-905. https://doi.org/10.2174/1874149501711010896
- Chan, S. K. and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-I. Theory and validation", Int. J. Mech. Sci., 13(7), 615-625. https://doi.org/10.1016/0020-7403(71)90032-4
- Chan, S.K., and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-part II. Application to turbine blade fastenings", Int. J. Mech. Sci., 13(7), 627-639. https://doi.org/10.1016/0020-7403(71)90033-6
- Comez, I., Kahya, V., and Erdol, R. (2018), "Plane receding contact problem for a functionally graded layer supported by two quarter-planes", Arch. Mech., 70(6), 485-504. https://doi.org/10.24423/aom.2846
- Comez, I. (2019), "Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch", Mech. Mater., 133, 120-127. https://doi.org/10.1016/j.mechmat.2019.02.012
- Deng, X., Qian, Z., Li, Z. and Dollevoet R. (2017), "Applicability of half-space-based methods to non-conforming elastic normal contact problems", Int. J. Mech. Sci., 26, 229-234. https://doi.org/10.1016/j.ijmecsci.2017.04.002
- Fredriksson, B. (1976). "Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems", Comput. Struct., 6(4-5), 281-290. https://doi.org/10.1016/0045-7949(76)90003-1
- Gandhi, V.C.S., Kumaravelan, R., and Ramesh, S. (2014), "Performance analysis of spherical indentation process during loading and unloading a contact mechanics approach", Struct. Eng. Mech., Int. J., 52 (3), 469-483. http://doi.org/10.12989/sem.2014.52.3.469
- Gandhi, V.C.S., Kumaravelan, R., Ramesh, S. and Sriram, K. (2015), "Analysis of material dependency in an elastic -plastic contact models using contact mechanics approach", Struct. Eng. Mech., Int. J., 53 (5), 1051-1061. https://doi.org/10.12989/sem.2015.53.5.1051
- Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
- Hertz, H. (1881), "Uber die Beruhrung fester elastischer Korper", J. Angew. Math., 92, 156-171. https://doi.org/10.1515/crll.1882.92.156
- Hildi. P. and Laborde. P. (2002), "Quadratic finite element methods for unilateral contact problems", Appl. Numer. Math., 41(3), 401-421. https://doi.org/10.1016/S0168-9274(01)00124-6
- Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263
- Karabulut, P. M., Adiyaman, G., and Birinci, A. (2017), "A receding contact problem of a layer resting on a half plane", Struct. Eng. Mech., Int. J., 64(4), 505-513. https://doi.org/10.12989/sem.2017.64.4.505
- Khoei, A. R. and Bahmani, B. (2018), "Application of an enriched FEM technique in thermo-mechanical contact problems", Comput. Mech., 62, 1127-1154. https://doi.org/10.1007/s00466-018-1555-z
- Klarbring, A. and Orkman, G. (1992), "Solution of large displacement contact problems with friction using Newton's method for generalized equations", Int. J. Numer. Meth. Eng., 34(1), 249-269. https://doi.org/10.1002/nme.1620340116
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
- Liu, C.H., Cheng, I., Tsai, A.C., Wang, L.J., and Hsu, J.Y. (2010), "Using multiple point constraints in finite element analysis of two dimensional contact problems", Struct. Eng. Mech., Int. J., 36(1), 95-110. https://doi.org/10.12989/sem.2010.36.1.095
- Liu, Z., Yan, J., and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., Int. J., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329
- Mohamed, S.A., Helal, M.M. and Mahmoud, F.F. (2006), "An incremental convex programming model of the elastic frictional contact problems", Struct. Eng. Mech., Int. J., 23(4), 431-447. https://doi.org/10.12989/sem.2006.23.4.431
- Oden, J.T. and Pires, E.B. (1984), "Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws", Comput. Struct., 19(1-2), 137-147. https://doi.org/10.1016/0045-7949(84)90212-8
- Okamoto, N. and Nakazawa, M. (1979), "Finite element incremental contact analysis with various frictional conditions", Int. J. Numer. Meth. Eng., 14(3), 337-357. https://doi.org/10.1002/nme.1620140304
- Ozsahin, T.S. (2007), "Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches", Struct. Eng. Mech., Int. J., 25(4), 383-403. https://doi.org/10.12989/sem.2007.25.4.383
- Peric. D. and Owen, D.R.J. (1992), "Computational model for contact problems with friction based on the penalty method", Int. J. Numer. Meth. Eng., 35(6), 1289-1309. https://doi.org/10.1002/nme.1620350609
- Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., Int. J., 58(2), 217-230. https://doi.org/10.12989/sem.2016.58.2.217
- Roncevic, B. and Siminiati, D. (2010), "Two dimensional receding contact problem analysis with NX NASTRAN", Adv. Eng., 4, 1846-1853.
- Roncevic, B., Bakic, A., and Kodvanj, J. (2018). "Numerical receding contact analysis of a perfect-fit pin and bushing in a loaded plate" Teh. Vjesn., 25(2), 283-290. https://doi.org/10.17559/TV-20160425193218
- Salem, M., Bouiadjra, B.B., Mechab, B. and Kaddouri, K. (2015), "Elastic-plastic analysis of the J integral for repaired cracks in plates", Adv. Mater. Res., 4(2), 87-96. https://doi.org/10.12989/amr.2015.4.2.087
- Simo, J.C. and Laursen, T.A. (1992), "An augmented lagrangian treatment of contact problems involving friction", Comput. Struct., 42, 97-116. https://doi.org/10.1016/0045-7949(92)90540-G
- Tigdemir, M., Jafarzadyeganeh, M., Bayrak, M. Ç., and Avcar, M. (2018). Numerical Modelling of Wheel on the Snow. International J. Eng. Appl. Sci., 10(2), 64-72. http://dx.doi.org/10.24107/ijeas.437861
- Turan, M., Adiyaman, G., Kahya, V. and, Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., Int. J., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423
- Wriggers. P . (2003), Computational contact mechanics. Comput. Mech., 32(1-2), 141-141. https://doi.org/10.1007/s00466-003-0472-x
- Yan, W. and Fischer, F.D. (2000), "Applicability of the Hertz contact theory to rail-wheel contact problems", Arch. Appl. Mech., 70, 255-268. https://doi.org/10.1007/s004199900035
- Wiest. M., Kassa. E., Daves, W., Nielsen, J.C.O. and Ossberger, H. (2008), "Assessment of methods for calculating contact pressure in wheel-rail/switch contact", Wear, 265(9-10), 1439-1445. https://doi.org/10.1016/j.wear.2008.02.039
- Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki. M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009
Cited by
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
- Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM vol.27, pp.3, 2019, https://doi.org/10.12989/cac.2021.27.3.199
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.307
- Z shape joints under uniaxial compression vol.12, pp.2, 2019, https://doi.org/10.12989/acc.2021.12.2.105