DOI QR코드

DOI QR Code

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Terzi, Cemalettin (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Avcar, Mehmet (Department of Civil Engineering, Suleyman Demirel University)
  • Received : 2019.04.29
  • Accepted : 2019.08.26
  • Published : 2019.12.25

Abstract

The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

Keywords

Acknowledgement

Supported by : Recep Tayyip Erdogan University

This research described in this paper was financially supported by the Recep Tayyip Erdoğan University Scientific Research Project (Grant no: FBA-2016-659). The first and second authors would like to thank institution.

References

  1. ABAQUS, (2017). ABAQUS/Standard: User's Manual, Dassault Systemes Simulia, Johnston, RI.
  2. Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R., and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
  3. Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R. B., and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., Int. J., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571
  4. Adibelli, H., Comez, I. and Erdol, R. (2013), "Receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp", Arch. Mech., 65(3), 219-236.
  5. Akbas, S. D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  6. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  7. ANSYS (2013). Swanson Analysis Systems Inc., Houston, PA, USA.
  8. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J.,, 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  9. Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytechnic 19(4), 507-512.https://doi.org/10.2339/2016.19.4507-512
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  11. Ayatollahi, M.R., Pirmohammad, S. and Sedighiani, K. (2014), "Three-dimensional finite element modeling of a transverse topdown crack in asphalt concrete", Comput. Concr., 13(4), 569-585. http://doi.org/10.12989/cac.2014.13.4.569
  12. Bathe, K.J. and Chaudhary, A. (1985), "A solution method for planar and axisymmetric contact problem", Int. J. Numer. Meth. Eng., 21(1), 65-88. https://doi.org/10.1002/nme.1620210107
  13. Belaasilia, Y., Timesli, A., Braikat, B. and Jamal, M. (2017), "A numerical mesh-free model for elasto-plastic contact problems", Eng. Anal. Bound. Elem., 82, 68-78. https://doi.org/10.1016/j.enganabound.2017.05.010
  14. Benouis, A., Boulenouar, A., Benseddiq, N. and Serier, B. (2015), "Numerical analysis of crack propagation in cement PMMA: application of SED approach", Struct. Eng. Mech., Int. J., 55(1), 99-109. http://doi.org/10.12989/sem.2015.55.1.093
  15. Birinci, A. (2011), "Crack-contact problem for an elastic layer with rigid stamps", Struct. Eng. Mech., Int. J., 37(3), 285-296. http://doi.org/10.12989/sem.2011.37.3.285
  16. Cetisli, F. and Kaman, M.O. (2014), "Numerical analysis of interface crack problem in composite plates jointed with composite patch", Steel Compos. Struct., Int. J., 13(2), 203-220. http://doi.org/10.12989/scs.2014.16.2.203
  17. Chaolei, Z., Qian, G., Zhiqiang, H., Gao, L. and Jingzhou, L. (2017), "Studies on static frictional contact problems of double cantilever beam based on SBFEM", Open Civ. Eng. J., 11(1), 896-905. https://doi.org/10.2174/1874149501711010896
  18. Chan, S. K. and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-I. Theory and validation", Int. J. Mech. Sci., 13(7), 615-625. https://doi.org/10.1016/0020-7403(71)90032-4
  19. Chan, S.K., and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-part II. Application to turbine blade fastenings", Int. J. Mech. Sci., 13(7), 627-639. https://doi.org/10.1016/0020-7403(71)90033-6
  20. Comez, I., Kahya, V., and Erdol, R. (2018), "Plane receding contact problem for a functionally graded layer supported by two quarter-planes", Arch. Mech., 70(6), 485-504. https://doi.org/10.24423/aom.2846
  21. Comez, I. (2019), "Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch", Mech. Mater., 133, 120-127. https://doi.org/10.1016/j.mechmat.2019.02.012
  22. Deng, X., Qian, Z., Li, Z. and Dollevoet R. (2017), "Applicability of half-space-based methods to non-conforming elastic normal contact problems", Int. J. Mech. Sci., 26, 229-234. https://doi.org/10.1016/j.ijmecsci.2017.04.002
  23. Fredriksson, B. (1976). "Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems", Comput. Struct., 6(4-5), 281-290. https://doi.org/10.1016/0045-7949(76)90003-1
  24. Gandhi, V.C.S., Kumaravelan, R., and Ramesh, S. (2014), "Performance analysis of spherical indentation process during loading and unloading a contact mechanics approach", Struct. Eng. Mech., Int. J., 52 (3), 469-483. http://doi.org/10.12989/sem.2014.52.3.469
  25. Gandhi, V.C.S., Kumaravelan, R., Ramesh, S. and Sriram, K. (2015), "Analysis of material dependency in an elastic -plastic contact models using contact mechanics approach", Struct. Eng. Mech., Int. J., 53 (5), 1051-1061. https://doi.org/10.12989/sem.2015.53.5.1051
  26. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  27. Hertz, H. (1881), "Uber die Beruhrung fester elastischer Korper", J. Angew. Math., 92, 156-171. https://doi.org/10.1515/crll.1882.92.156
  28. Hildi. P. and Laborde. P. (2002), "Quadratic finite element methods for unilateral contact problems", Appl. Numer. Math., 41(3), 401-421. https://doi.org/10.1016/S0168-9274(01)00124-6
  29. Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263
  30. Karabulut, P. M., Adiyaman, G., and Birinci, A. (2017), "A receding contact problem of a layer resting on a half plane", Struct. Eng. Mech., Int. J., 64(4), 505-513. https://doi.org/10.12989/sem.2017.64.4.505
  31. Khoei, A. R. and Bahmani, B. (2018), "Application of an enriched FEM technique in thermo-mechanical contact problems", Comput. Mech., 62, 1127-1154. https://doi.org/10.1007/s00466-018-1555-z
  32. Klarbring, A. and Orkman, G. (1992), "Solution of large displacement contact problems with friction using Newton's method for generalized equations", Int. J. Numer. Meth. Eng., 34(1), 249-269. https://doi.org/10.1002/nme.1620340116
  33. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  34. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  35. Liu, C.H., Cheng, I., Tsai, A.C., Wang, L.J., and Hsu, J.Y. (2010), "Using multiple point constraints in finite element analysis of two dimensional contact problems", Struct. Eng. Mech., Int. J., 36(1), 95-110. https://doi.org/10.12989/sem.2010.36.1.095
  36. Liu, Z., Yan, J., and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., Int. J., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329
  37. Mohamed, S.A., Helal, M.M. and Mahmoud, F.F. (2006), "An incremental convex programming model of the elastic frictional contact problems", Struct. Eng. Mech., Int. J., 23(4), 431-447. https://doi.org/10.12989/sem.2006.23.4.431
  38. Oden, J.T. and Pires, E.B. (1984), "Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws", Comput. Struct., 19(1-2), 137-147. https://doi.org/10.1016/0045-7949(84)90212-8
  39. Okamoto, N. and Nakazawa, M. (1979), "Finite element incremental contact analysis with various frictional conditions", Int. J. Numer. Meth. Eng., 14(3), 337-357. https://doi.org/10.1002/nme.1620140304
  40. Ozsahin, T.S. (2007), "Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches", Struct. Eng. Mech., Int. J., 25(4), 383-403. https://doi.org/10.12989/sem.2007.25.4.383
  41. Peric. D. and Owen, D.R.J. (1992), "Computational model for contact problems with friction based on the penalty method", Int. J. Numer. Meth. Eng., 35(6), 1289-1309. https://doi.org/10.1002/nme.1620350609
  42. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., Int. J., 58(2), 217-230. https://doi.org/10.12989/sem.2016.58.2.217
  43. Roncevic, B. and Siminiati, D. (2010), "Two dimensional receding contact problem analysis with NX NASTRAN", Adv. Eng., 4, 1846-1853.
  44. Roncevic, B., Bakic, A., and Kodvanj, J. (2018). "Numerical receding contact analysis of a perfect-fit pin and bushing in a loaded plate" Teh. Vjesn., 25(2), 283-290. https://doi.org/10.17559/TV-20160425193218
  45. Salem, M., Bouiadjra, B.B., Mechab, B. and Kaddouri, K. (2015), "Elastic-plastic analysis of the J integral for repaired cracks in plates", Adv. Mater. Res., 4(2), 87-96. https://doi.org/10.12989/amr.2015.4.2.087
  46. Simo, J.C. and Laursen, T.A. (1992), "An augmented lagrangian treatment of contact problems involving friction", Comput. Struct., 42, 97-116. https://doi.org/10.1016/0045-7949(92)90540-G
  47. Tigdemir, M., Jafarzadyeganeh, M., Bayrak, M. Ç., and Avcar, M. (2018). Numerical Modelling of Wheel on the Snow. International J. Eng. Appl. Sci., 10(2), 64-72. http://dx.doi.org/10.24107/ijeas.437861
  48. Turan, M., Adiyaman, G., Kahya, V. and, Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., Int. J., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423
  49. Wriggers. P . (2003), Computational contact mechanics. Comput. Mech., 32(1-2), 141-141. https://doi.org/10.1007/s00466-003-0472-x
  50. Yan, W. and Fischer, F.D. (2000), "Applicability of the Hertz contact theory to rail-wheel contact problems", Arch. Appl. Mech., 70, 255-268. https://doi.org/10.1007/s004199900035
  51. Wiest. M., Kassa. E., Daves, W., Nielsen, J.C.O. and Ossberger, H. (2008), "Assessment of methods for calculating contact pressure in wheel-rail/switch contact", Wear, 265(9-10), 1439-1445. https://doi.org/10.1016/j.wear.2008.02.039
  52. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki. M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009

Cited by

  1. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
  2. Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM vol.27, pp.3, 2019, https://doi.org/10.12989/cac.2021.27.3.199
  3. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.307
  4. Z shape joints under uniaxial compression vol.12, pp.2, 2019, https://doi.org/10.12989/acc.2021.12.2.105