DOI QR코드

DOI QR Code

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology,) ;
  • Zhao, Ke (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology,) ;
  • Xu, Kuo (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology,)
  • Received : 2019.07.02
  • Accepted : 2019.08.26
  • Published : 2019.12.25

Abstract

The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Keywords

References

  1. Abdelaziz, H.H., Atmane, H.A., Mechab, I., Boumia, L., Tounsi, A and El Abbas, A.B. (2011), "Static Analysis of Functionally Graded Sandwich Plates Using an Efficient and Simple Refined Theory", Chinese J. Aeronaut., 24(4), 434-448. https://doi.org/10.1016/S1000-9361(11)60051-4.
  2. Akhras, G. and Li, W.C., (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method", Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/j.compstruct.2009.06.010.
  3. Akhras, G., Cheung, M. and Li, W. (1994), "Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory", Compos. Struct., 52, 471-477. https://doi.org/https://doi.org/10.1016/0045-7949(94)90232-1.
  4. Belarbia M-O, Tatib A, Ounisc H. and Benchabane, A. (2016), "Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates", Struct. Eng. Mech., 57(3), 473-506. https://doi.org/10.12989/sem.2016.57.3.473.
  5. Benbakhti, A., Bouiadjra, M. B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975.
  6. Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civ. Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004.
  7. Driz, H., Benchohra, M., Bakora, A., Benachour, A., Tounsi, A. and Bedia, E.A.A. (2018), "A new and simple HSDT for isotropic and functionally graded sandwich plates", Steel Compos. Struct., 26(4), 387. https://doi.org/10.12989/scs.2018.26.4.387.
  8. Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircr. Spacecr. Sci. 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.
  9. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Ferreira, A. (2018), "On the Convergence of Laminated Composite Plates of Arbitrary Shape through Finite Element Models", J. Compos. Sci., 2(1), 16. https://doi.org/10.3390/jcs2010016.
  10. Ferreira, A., Roque, C. and Martins, P. (2003), "Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B Eng., 34, 627-636. https://doi.org/https://doi.org/10.1016/S1359-8368(03)00083-0.
  11. Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006.
  12. Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of Sandwich Plates by Generalized Differential Quadrature Method", Math. Probl. Eng., 2013, 1-12. https://doi.org/10.1155/2013/964367.
  13. Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12(1), 1-11. https://doi.org/10.12989/scs.2011.12.1.001.
  14. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9.
  15. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech. 67(2), 115-123. https://doi.org/http://dx.doi.org/10.12989/sem.2018.67.2.115.
  16. Jalali M. H. Shahriari B, Zargar O, et al. (2018), "Free vibration analysis of rotating functionally graded annular disc of variable thickness using generalized differential quadrature method", Sci. Iran., 25(2), 728-740. https://doi.org/10.24200/sci.2017.4325.
  17. Jalali, M. H., Zargar, O. and Baghani, M. (2018), "Size-Dependent Vibration Analysis of FG Microbeams in Thermal Environment Based on Modified Couple Stress Theory", Iran. J. Sci. Technol. Trans. Mech. Eng. https://doi.org/10.1007/s40997-018-0193-6.
  18. Jalali, S.K. and Heshmati, M. (2016), "Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets", Thin-Walled Struct. 100. https://doi.org/10.1016/j.tws.2015.12.001.
  19. Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2017), "Vibrational behavior of non-uniform piezoelectric sandwich beams made of CNT-reinforced polymer nanocomposite by considering the agglomeration effect of CNTs", Polym. Compos. 38, E553-E562. https://doi.org/10.1002/pc.23933.
  20. Lin, G., Zhang, P., Liu, J. and Li, J. (2018), "Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method", Compos. Struct., 187, 579-592. https://doi.org/10.1016/j.compstruct.2017.11.001.
  21. Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Walled Struct. 46, 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  22. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  23. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  24. Mirzaalian, M., Aghadavoudi, F. and Moradi-Dastjerdi, R. (2019), "Bending Behavior of Sandwich Plates with Aggregated CNTReinforced Face Sheets", J. Solid Mech., 11(1), 26-38. https://doi.org/10.22034/jsm.2019.664214.
  25. Mohammadimehr M, Zarei HB, Parakandeh A, et al. (2017), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and unsymmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech. 64(3), 361. https://doi.org/10.12989/sem.2017.64.3.361.
  26. Mohammadsalehi, M., Zargar, O. and Baghani, M. (2017), "Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory", Meccanica, 52, 1063-1077. https://doi.org/10.1007/s11012-016-0432-0.
  27. Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.
  28. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct. 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.
  29. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct. 22(2), 277- 299. http://dx.doi.org/10.12989/scs.2016.22.2.277.
  30. Moradi-Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad-Taheri, M. (2016), "Static and Free Vibration Analyses of Functionally Graded Nano- composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation", Mech. Adv. Compos. Struct., 3, 123-135. https://doi.org/10.22075/macs.2016.474.
  31. Moradi-Dastjerdi, R., Malek-Mohammadi, H. and Momeni- Khabisi, H. (2017), "Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates", ZAMM - J. Appl. Math. Mech. / Zeitschrift fur Angew. Math. und Mech. 97(11), 1418-1435. https://doi.org/10.1002/zamm.201600209.
  32. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2018), "Thermoelastic Analysis of Functionally Graded Cylinders Reinforced by Wavy CNT Using a Mesh-Free Method", Polym. Compos., 39(7), 2190-2201. https://doi.org/10.1002/pc.24183.
  33. Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  34. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higherorder shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091.
  35. Nguyen, N.V., Nguyen, H.X., Lee, S. and Nguyen-Xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Softw., 126, 110-126. https://doi.org/10.1016/j.advengsoft.2018.11.005.
  36. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B, 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
  37. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99(15), 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028.
  38. Pourasghar, A. and Chen, Z. (2019a), "Dual-phase-lag heat conduction in FG carbon nanotube reinforced polymer composites", Phys. B Condens. Matter, 564, 147-156. https://doi.org/10.1016/j.physb.2019.03.038.
  39. Pourasghar, A. and Chen, Z. (2019b), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002.
  40. Pourasghar, A. and Chen, Z. (2019c), "Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse", Int. J. Solids Struct., 163, 117-129. https://doi.org/10.1016/j.ijsolstr.2018.12.030
  41. Pourasghar, A. and Chen, Z. (2019d), "Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs", Polym. Eng. Sci., https://doi.org/10.1002/pen.25119.
  42. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  43. Rad, A.B., Farzan-Rad, M.R. and Majd, K.M. (2017), "Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force", Struct. Eng. Mech. 64(5), 591. https://doi.org/10.12989/sem.2017.64.5.591.
  44. Rashidi, S., Esfahani, J.A. and Karimi, N. (2018), "Porous materials in building energy technologies-A review of the applications, modelling and experiments", Renew. Sustain. Energy Rev. 91, 229-247. https://doi.org/10.1016/J.RSER.2018.03.092.
  45. Reddy, J.N. (1993), Introduction to the Finite Element Method. McGraw-Hill, New York, USA.
  46. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, USA.
  47. Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F.H. (2012), "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253.
  48. Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Technol., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.
  49. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K. and Chu, F. (2019), "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. https://doi.org/10.1016/j.ast.2019.05.020.
  50. Safaei, B., Moradi-Dastjerdi, Rasool., Qin, Z., Behdinan, K. and Chu, F. (2019), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., https://doi.org/10.1177/109963621984828.
  51. Safaei, B., Moradi-Dastjerdi, Rasool., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng. 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049.
  52. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z. and Chu, F. (2019), "Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers", Compos. Struct., 226. https://doi.org/10.1016/j.compstruct.2019.111209.
  53. Salami, S.J. and Dariushi, S. (2018), "Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory", Struct. Eng. Mech. 68(3), 325-334. https://doi.org/10.12989/sem.2018.68.3.325.
  54. Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. Part B Eng., 165, 798-822. https://doi.org/10.1016/J.COMPOSITESB.2019.01.022.
  55. Shokri-Oojghaz R, Moradi‐Dastjerdi, R., Mohammadi, H. and Behdinan, K. (2019), "Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube", Polym. Compos., 40(S2), E1918-E1927. https://doi.org/10.1002/pc.25206.
  56. Thai, C. H., Ferreira, A. J. M., Carrera, E. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory", Compos. Struct., 104, 196-214. https://doi.org/10.1016/j.compstruct.2013.04.002.
  57. Tian, A., Ye, R. and Chen, Y. (2016), "A new higher order analysis model for sandwich plates with flexible core", J. Compos. Mater., 50(7), 949-961. https://doi.org/10.1177/0021998315584650.
  58. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017), "A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation", Compos. Part B Eng., 126, 162-191. https://doi.org/10.1016/J.COMPOSITESB.2017.06.012.
  59. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear Static Behavior of Damaged Laminated Composite Plates and Shells", Materials (Basel), 10(7), 811. https://doi.org/10.3390/ma10070811.
  60. Vinson, J.R. (2001), "Sandwich Structures", Appl. Mech. Rev. 54(3), 201. https://doi.org/10.1115/1.3097295.
  61. Wang, Z. and Shen, H. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B, 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040.
  62. Xiang, S., Wang, Y.G. and Kang, G.W. (2015), "Static Analysis of Laminated Composite Plates Using n -Order Shear Deformation Theory and a Meshless Global Collocation Method", Mech. Adv. Mater. Struct., 22(6), 470-478. https://doi.org/10.1080/15376494.2013.799247.
  63. Xiaohui, R., Zhen, W. and Bin, J. (2018), "A refined sinusoidal theory for laminated composite and sandwich plates A refined sinusoidal theory for laminated composite and sandwich plates", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2018.1538469.
  64. Zarei, A. and Khosravifard, A. (2019), "A meshfree method for static and buckling analysis of shear deformable composite laminates considering continuity of interlaminar transverse shearing stresses", Compos. Struct., 209, 206-218. https://doi.org/10.1016/j.compstruct.2018.10.077.
  65. Zargar, O., Masoumi, A. and Moghaddam, A.O. (2017), "Investigation and optimization for the dynamical behaviour of the vehicle structure", Int. J. Automot. Mech. Eng., 14, 4196-4210. https://doi.org/10.15282/ijame.14.2.2017.7.0336.
  66. Zhao, J., Xie, F. and Wang, A. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B, 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.