DOI QR코드

DOI QR Code

(𝜑, 𝜓)-BIFLAT AND 𝜑, 𝜓)-AMENABLE BANACH ALGEBRAS

  • Received : 2019.01.12
  • Accepted : 2019.03.12
  • Published : 2019.12.25

Abstract

The article studies the concept of a (𝜑, 𝜓)-biflat and (𝜑, 𝜓)-amenable Banach algebra A, where 𝜑 is a continuous homomorphism on A and 𝜓 ∈ ΦA. We show if A has a (𝜑, 𝜓)-virtual diagonal, then A is (𝜑, 𝜓)- biflat. In the case where 𝜑(A) is commutative we prove that (𝜑, 𝜓)- biflatness of A implies that A has a (𝜑, 𝜓)-virtual diagonal.

Keywords

References

  1. M. Ashraf and N.Rehman, On (${\sigma}-{\tau}$) derivations in prime rings, Arch. Math. (BRNO) 38 (2002), 259 - 264.
  2. F. F. Bonsall and J. Duncan, Complete normed algebra, Springer-Verlag, 1973.
  3. H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs 24 (Clarendon Press, Oxford), 2000.
  4. A. Ya. Helemskii, Banach and locally convex algebras, Clarendon Press, Oxford University Press, New York, 1993.
  5. A. Ya. Helemskii, Flat Banach modules and amenable algebras, (translated from the Russian). Trans. Moscow Math. Soc. 47 (1985), 199-224.
  6. A. Ya. Helemskii, The Homology of Banach and topological algebras, 41 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989.
  7. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 1972.
  8. E. Kaniuth, A. Lau, and J. Pym, On ${\varphi}$-amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 85-96. https://doi.org/10.1017/S0305004107000874
  9. J. L. Kelley, General topology, D. Van Nostrand Company, Inc., New York, 1955.
  10. M. Mirzavaziri and M.S. Moslehian, ${\sigma}$-derivations in Banach algebras, Bull. Iranian Math. Soc. (2006), 65-78.
  11. M. S. Moslehian and A. N. Motlagh, Some notes on (${\sigma},{\tau}$)-amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. 53 (2008), 57-68.
  12. P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79 (2009), 515-530. https://doi.org/10.1007/s00233-009-9169-6
  13. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer, 2002.