Acknowledgement
Supported by : UTC, IUF-Institute Universitaire de France
The research described in this paper was financially supported by the Chaire de Mécanique UTC and IUF-Institute Universitaire de France.
References
- Armero, F. and Valverde, J. (2012), "Invariant Hermitian finite elements for thin Kirchhoff rods. II: The linear three-dimensional case", Comput. Meth. Appl. Mech. Eng., 213-216, 458-85. https://doi.org/10.1016/j.cma.2011.05.014.
- Boyer, F. and Primault, D. (2004), "Finite element of slender beams in finite transformations: A geometrically exact approach", Int. J. Numer. Meth. Eng., 59, 669-702. https://doi.org/10.1002/nme.879.
- DaDeppo, D.A. and Schmidt, R. (1975), "Instability of clamped-hinged circular arches subjected to a point load", J. Appl. Mech., 42(4), 894-96. https://doi.org/10.1115/1.3423734.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Failure mechanisms in coupled soil-foundation systems", Coupled Syst. Mech., 7(1), 27-42. https://doi.org/10.12989/csm.2018.7.1.027.
- Hadzalic, E., Ibrahimbegovic, A. and Nikolic, M. (2018), "Failure mechanisms in coupled poro-plastic medium", Coupled Syst. Mech., 7(1), 43-59. https://doi.org/10.12989/csm.2018.7.1.043.
- Hill, R. (1950), The Mathematical Theory of Plasticity, Clarendon Press, Oxford, U.K.
- Ibrahimbegovic, A. (1992), "A consistent finite-element formulation of non-linear elastic cables", Commun. Appl. Numer. Meth., 8(8), 547-556. https://doi.org/10.1002/cnm.1630080809.
- Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: Three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122(1-2), 11-26. https://doi.org/10.1016/0045-7825(95)00724-F.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Springer, Dordrecht, Germany.
- Ibrahimbegovic, A. and Frey, F. (1993a), "Finite element analysis of linear and non-linear planar deformations of elastic initially curved beam", Int. J. Numer. Meth. Eng., 36, 3239-3258. https://doi.org/10.1002/nme.1620361903.
- Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupled Syst. Mech., 2(4), 349-374. https://doi.org/10.12989/csm.2013.2.4.349.
- Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2017), "Nonlinear kinematics Reissner's beam with combined hardening/softening elastoplasticity", Comput. Struct., 189, 17-20. https://doi.org/10.1016/j.compstruc.2017.04.011.
- Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2018), "Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics", Coupled Syst. Mech., 7(5), 555-581. https://doi.org/10.12989/csm.2018.7.5.555
- Imamovic, I., Ibrahimbegovic, A., Knopf-Lenoir, C. and Mesic, E. (2015), "Plasticity-damage model parameters identification for structural connections", Coupled Syst. Mech., 4(4), 337-364. https://doi.org/10.12989/csm.2015.4.4.337.
- Kitarovic, S. (2014) "Nonlinear Euler-Bernoulli beam kinematics in progressive collapse analysis based on the Smith's approach", Mar. Struct., 39, 118-130. https://doi.org/10.1016/j.marstruc.2014.07.001.
- Maassen, S., Pimenta, P. and Schroeder, J. (2018), "A geometrically exact euler-bernoulli beam formulation for nonlinear 3d material laws", Proceedings of the 39th Ibero-Latin American Congress on Computational Methods in Engineering, Paris/Compiegne, France, November.
- Maurin, F., Greco, F., Dedoncker, S. and Desmet, W. (2018), "Isogeometric analysis for nonlinear planar Kirchhoff rods: Weighted residual formulation and collocation of the strong form", Comput. Meth. Appl. Mech. Eng., 340, 1023-1043. https://doi.org/10.1016/j.cma.2018.05.025.
- Meier, C., Grill, M.J., Wall, W. and Popp, A. (2018), "Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures", Int. J. Solids Struct., 154, 124-46. https://doi.org/10.1016/j.ijsolstr.2017.07.020.
- Meier, C., Popp, A. and Wall, W. (2019), "Geometrically exact finite element formulations for slender beams: Kirchhoff-love theory versus Simo-Reissner theory", Arch. Comput. Meth. Eng., 26(1), 163-243. https://doi.org/10.1007/s11831-017-9232-5.
- Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical conditions", Coupled Syst. Mech., 3(1) ,89-110. https://doi.org/10.12989/csm.2014.3.1.089.
- Pirmansek, K., Cesarek, P., Zupan, D. and Saje, M. (2017), "Material softening and strain localization in spatial geometrically exact beam finite element method with embedded discontinuity", Comput. Struct., 182, 267-283. https://doi.org/10.1016/j.compstruc.2016.12.009.
- Reissner, E. (1972), "On one-dimensional finite-strain beam theory: The plane problem", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 23(5), 795-804. https://doi.org/10.1007/BF01602645.
- Reissner, E. (1981), "On finite deformations of space-curved beams", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 32(6), 734-44. https://doi.org/10.1007/BF00946983.
- Simo, J.C. (1985), "A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer", Meth. Appl. Mech. Eng., 49(1), 55-70. https://doi.org/10.1016/0045-7825(85)90050-7.
- Simo, J.C., Hjelmstad, K.D. and Taylor, R.L. (1984), "Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear", Comput. Meth. Appl. Mech. Eng., 42(3), 301-330. https://doi.org/10.1016/0045-7825(84)90011-2.
- Sonneville, V., Bruls, O. and Bauchau, O. (2017), "Interpolation schemes for geometrically exact beams: A motion approach", Int. J. Numer. Meth. Eng., 112(9), 1129-53. https://doi.org/10.1002/nme.5548.
- Taylor, R.L. (2008), FEAP - A Finite Element Analysis Program, Berkeley, California, U.S.A.
- Williams, F.W. (1964), "An approach to the non-linear beahviour of the members of a rigid jointed plane framework with finite deflection", Quart. J. Mech. Appl. Math., 17(4), 451-469. https://doi.org/10.1093/qjmam/17.4.451.
Cited by
- Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.079