DOI QR코드

DOI QR Code

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2019.09.23
  • Accepted : 2019.11.07
  • Published : 2019.12.25

Abstract

The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Keywords

Acknowledgement

The corresponding author Harpreet Kaur duly acknowledges the Junior Research Fellowship(JRF) received from University Grants Commission (UGC) Delhi India for pursuing her Ph.D. under the sanctioned no. 19/6/2016/(i) EU-V.

References

  1. Abbas I.A. (2014b), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  2. Abbas I.A. (2016), " Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory", Mech. Based Des. Struct., Machine., 45(3), 395-405. https://doi.org/10.1080/15397734.2016.1231065.
  3. Abbas, I.A. (2014c), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
  4. Abbas, I.A. (2014a), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6.
  5. Abbas, I.A. (2015), "A dual phase lag model on thermoelastic interaction in an infinite fiber reinforced anisotropic medium with a circular hole", Mech. Based Des. Struct., Machine., 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589.
  6. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magnetothermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9.
  7. Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
  8. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5) ,485-502. https://doi.org/10.12989/sem.2019.71.5.485 https://doi.org/10.12989/sem.2019.71.5.485.
  9. Ansari, R. Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates", Lat. Am. J. Solids Struct., 11, 2351-2378. http://dx.doi.org/10.1590/S1679-78252014001300003.
  10. Ansari, R., Ashrafi, M.A. and Hosseinzadeh, S. (2014), "Vibration characteristics of Piezoelectric microbeams based on the modified couple stress theory", Shock Vib., 2014(1), 1-12. http://dx.doi.org/10.1155/2014/598292.
  11. Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195.
  12. Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013.
  13. Atanasov, M.S., Karlicic, D., Kozic, P. and Janevski, G. (2017), "Thermal effect on free vibration and buckling of a double-microbeam system", Facta Univ. Ser. Mech. Eng., 15(1), 45-62. https://doi.org/10.22190/FUME161115007S.
  14. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  15. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  16. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  17. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R.( 2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  18. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  19. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
  20. Chen, W., Li, L. and Xu, M. (2011), "A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation", Compos. Struct., 93, 2723-2732. https://doi.org/10.1016/j.compstruct.2011.05.032.
  21. Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
  22. Darijani, H. and Shahdadi. A.H. (2015), "A new shear deformation model with modified couple stress theory for microplates", Acta Mechanica, 226(8), 2773-2788. https://doi.org/10.1007/s00707-015-1338-y.
  23. Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publisher Corporation, New Delhi, India.
  24. Ezzat, M. and AI-Bary, A.A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromag. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
  25. Ezzat, M., El-Karamany, A. and El-Bary, A.A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Modell., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018.
  26. Fakhrabadi, M.M.S. (2017), "Application of modified couple stress theory and homotopy perturbation method in investigation of electromechanical behaviors of carbon nanotubes", Adv. Appl. Math. Mech., 9(1), 23-42. https://doi.org/10.4208/aamm.2014.m71.
  27. Fang, Y., Li, P. and Wang, Z. (2013), "Thermoelastic damping in the axisymmetric vibration of circular microplate resonators with two dimensional heat conduction", J. Therm. Stresses, 36, 830-850. https://doi.org/10.1080/01495739.2013.788406.
  28. Farokhi, H. and Ghayesh, M.H. (2018), "Modified couple stress theory in orthogonal curvilinear coordinates", Acta Mechanica, 230(1), 851-869. https://doi.org/10.1007/s00707-018-2331-z.
  29. Gao, X.L. and Zhang, G.Y. (2016), "A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects", Contin. Mech. Thermodyn., 28, 195-213. https://doi.org/10.1007/s00161-015-0413-x.
  30. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
  31. Hassan, M., Marin M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.
  32. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
  33. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  34. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  35. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
  36. Koiter, W.T. (1964), "Couple-stresses in the theory of elasticity", Proc. Nat. Acad. Sci., 67, 17-44.
  37. Kumar, R. and Devi, S. (2015), "Interaction due to Hall current and rotation in a modified couple stress elastic half-space due to ramp-type loading", Compos. Mater. Solid Struct., 21(4), 229-240. https://doi.org/10.12921/cmst.2015.21.04.007. https://doi.org/10.12921/cmst.2015.21.04.007.
  38. Kumar, R. and Devi, S. (2016), "A problem of thick circular plate in modified couple stress theory of thermoelastic diffusion", Cogent Math., 3(1), 1-14. http://dx.doi.org/10.1080/23311835.2016.1217969.
  39. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in anisotropic thermoelastic medium", Steel Compos. Struct., 22(3),567-587. https://doi.org/10.12989/scs.2016.22.3.567.
  40. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8),625-635. https://doi.org/10.1080/15376494.2016.1196769.
  41. Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  42. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.
  43. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017a), "Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media", Appl. Appl. Math., 12(1), 319-336.
  44. Lakes R.S. (1982), "Dynamical study of couple stress effects in human compact bone", J. Biomech. Eng., 104, 6-11. https://doi.org/10.1115/1.3138308
  45. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4) ,439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  46. Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
  47. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055.
  48. Lata, P. and Kaur, I. (2019a), "Thermomechanical interactions in a transversely isotropic magnato thermoelastic solids with two temperature and rotation due to time harmonic sources", Coupled System Mechanics, 8(3), 219-245. https://doi.org/10.12989/csm.2019.8.3.219.
  49. Malikan, M. (2017), "Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory", J. Appl. Comput. Mech., 4(1), 1-15. https://doi.org/10.22055/JACM.2017.21820.1117.
  50. Marin M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  51. Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Roma, 17(7), 103-113.
  52. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
  53. Marin, M. (1997a), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
  54. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  55. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  56. Mehralian, F. and TadiBeni, Y. (2017), "Thermo-electromechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory", J. Mech. Sci. Technol., 31(4), 1773-1787. https://doi.org/10.1007/s12206-017-0325-8.
  57. Nowacki, W. (1974) "Dynamical problems of thermo diffusion in solids I", Bull. Pol. Acad. Sci. Tech. Sci., 22, 55-64.
  58. Othman M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.
  59. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  60. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation", Mech. Adv. Mater. Struct., 22(11), 945-955. https://doi.org/10.1080/15376494.2014.884657.
  61. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355. https://doi.org/10.1088/0960-1317/16/11/015.
  62. Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipe, Cambridge University Press.
  63. Rafiq, M., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual-phase-lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. https://doi.org/10.1515/phys-2019-0002.
  64. Sharma, J.N. and Sharma, R. (2011), "Damping in micro-scale generalized thermoelastic circular plate resonators", Ultrasonics, 51, 352-358. https://doi.org/10.1016/j.ultras.2010.10.009.
  65. Sherief, H.H. and Saleh, H.A. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42, 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001.
  66. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
  67. Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
  68. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  69. Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.
  70. Zozulya, V. (2018), "Higher order couple stress model for plates and shells", J. Appl. Math. Mech., 98(10), 1834-1863. https://doi.org/ 10.1002/zamm.201800022.

Cited by

  1. Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.521
  2. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.213
  3. Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory vol.3, pp.2, 2019, https://doi.org/10.12989/cme.2021.3.2.089