Acknowledgement
The corresponding author Harpreet Kaur duly acknowledges the Junior Research Fellowship(JRF) received from University Grants Commission (UGC) Delhi India for pursuing her Ph.D. under the sanctioned no. 19/6/2016/(i) EU-V.
References
- Abbas I.A. (2014b), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
- Abbas I.A. (2016), " Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory", Mech. Based Des. Struct., Machine., 45(3), 395-405. https://doi.org/10.1080/15397734.2016.1231065.
- Abbas, I.A. (2014c), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
- Abbas, I.A. (2014a), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6.
- Abbas, I.A. (2015), "A dual phase lag model on thermoelastic interaction in an infinite fiber reinforced anisotropic medium with a circular hole", Mech. Based Des. Struct., Machine., 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589.
- Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magnetothermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9.
- Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5) ,485-502. https://doi.org/10.12989/sem.2019.71.5.485 https://doi.org/10.12989/sem.2019.71.5.485.
- Ansari, R. Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates", Lat. Am. J. Solids Struct., 11, 2351-2378. http://dx.doi.org/10.1590/S1679-78252014001300003.
- Ansari, R., Ashrafi, M.A. and Hosseinzadeh, S. (2014), "Vibration characteristics of Piezoelectric microbeams based on the modified couple stress theory", Shock Vib., 2014(1), 1-12. http://dx.doi.org/10.1155/2014/598292.
- Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195.
- Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013.
- Atanasov, M.S., Karlicic, D., Kozic, P. and Janevski, G. (2017), "Thermal effect on free vibration and buckling of a double-microbeam system", Facta Univ. Ser. Mech. Eng., 15(1), 45-62. https://doi.org/10.22190/FUME161115007S.
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R.( 2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
- Chen, W., Li, L. and Xu, M. (2011), "A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation", Compos. Struct., 93, 2723-2732. https://doi.org/10.1016/j.compstruct.2011.05.032.
- Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
- Darijani, H. and Shahdadi. A.H. (2015), "A new shear deformation model with modified couple stress theory for microplates", Acta Mechanica, 226(8), 2773-2788. https://doi.org/10.1007/s00707-015-1338-y.
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publisher Corporation, New Delhi, India.
- Ezzat, M. and AI-Bary, A.A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromag. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
- Ezzat, M., El-Karamany, A. and El-Bary, A.A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Modell., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018.
- Fakhrabadi, M.M.S. (2017), "Application of modified couple stress theory and homotopy perturbation method in investigation of electromechanical behaviors of carbon nanotubes", Adv. Appl. Math. Mech., 9(1), 23-42. https://doi.org/10.4208/aamm.2014.m71.
- Fang, Y., Li, P. and Wang, Z. (2013), "Thermoelastic damping in the axisymmetric vibration of circular microplate resonators with two dimensional heat conduction", J. Therm. Stresses, 36, 830-850. https://doi.org/10.1080/01495739.2013.788406.
- Farokhi, H. and Ghayesh, M.H. (2018), "Modified couple stress theory in orthogonal curvilinear coordinates", Acta Mechanica, 230(1), 851-869. https://doi.org/10.1007/s00707-018-2331-z.
- Gao, X.L. and Zhang, G.Y. (2016), "A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects", Contin. Mech. Thermodyn., 28, 195-213. https://doi.org/10.1007/s00161-015-0413-x.
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
- Hassan, M., Marin M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
- Koiter, W.T. (1964), "Couple-stresses in the theory of elasticity", Proc. Nat. Acad. Sci., 67, 17-44.
- Kumar, R. and Devi, S. (2015), "Interaction due to Hall current and rotation in a modified couple stress elastic half-space due to ramp-type loading", Compos. Mater. Solid Struct., 21(4), 229-240. https://doi.org/10.12921/cmst.2015.21.04.007. https://doi.org/10.12921/cmst.2015.21.04.007.
- Kumar, R. and Devi, S. (2016), "A problem of thick circular plate in modified couple stress theory of thermoelastic diffusion", Cogent Math., 3(1), 1-14. http://dx.doi.org/10.1080/23311835.2016.1217969.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in anisotropic thermoelastic medium", Steel Compos. Struct., 22(3),567-587. https://doi.org/10.12989/scs.2016.22.3.567.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8),625-635. https://doi.org/10.1080/15376494.2016.1196769.
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017a), "Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media", Appl. Appl. Math., 12(1), 319-336.
- Lakes R.S. (1982), "Dynamical study of couple stress effects in human compact bone", J. Biomech. Eng., 104, 6-11. https://doi.org/10.1115/1.3138308
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4) ,439-451. https://doi.org/10.12989/scs.2018.27.4.439.
- Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055.
- Lata, P. and Kaur, I. (2019a), "Thermomechanical interactions in a transversely isotropic magnato thermoelastic solids with two temperature and rotation due to time harmonic sources", Coupled System Mechanics, 8(3), 219-245. https://doi.org/10.12989/csm.2019.8.3.219.
- Malikan, M. (2017), "Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory", J. Appl. Comput. Mech., 4(1), 1-15. https://doi.org/10.22055/JACM.2017.21820.1117.
- Marin M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Roma, 17(7), 103-113.
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
- Marin, M. (1997a), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
- Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mehralian, F. and TadiBeni, Y. (2017), "Thermo-electromechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory", J. Mech. Sci. Technol., 31(4), 1773-1787. https://doi.org/10.1007/s12206-017-0325-8.
- Nowacki, W. (1974) "Dynamical problems of thermo diffusion in solids I", Bull. Pol. Acad. Sci. Tech. Sci., 22, 55-64.
- Othman M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.
- Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
- Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation", Mech. Adv. Mater. Struct., 22(11), 945-955. https://doi.org/10.1080/15376494.2014.884657.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355. https://doi.org/10.1088/0960-1317/16/11/015.
- Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipe, Cambridge University Press.
- Rafiq, M., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual-phase-lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. https://doi.org/10.1515/phys-2019-0002.
- Sharma, J.N. and Sharma, R. (2011), "Damping in micro-scale generalized thermoelastic circular plate resonators", Ultrasonics, 51, 352-358. https://doi.org/10.1016/j.ultras.2010.10.009.
- Sherief, H.H. and Saleh, H.A. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42, 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001.
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.
- Zozulya, V. (2018), "Higher order couple stress model for plates and shells", J. Appl. Math. Mech., 98(10), 1834-1863. https://doi.org/ 10.1002/zamm.201800022.
Cited by
- Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.521
- Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.213
- Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory vol.3, pp.2, 2019, https://doi.org/10.12989/cme.2021.3.2.089